1. Mandelbrot, B. B. and J. W. V. Ness, "Fractional brownian motions, fractional noises and applications,", Vol. 10, No. 4, 422-437, 1968.
doi:10.1007/3-540-26536-8_2 Google Scholar
2. Dimri, V. P. and R. P. Srivastava, Fractal Behaviour of the Earth System, 23-37, Springer Berlin Heidelberg, 2005.
doi:10.1016/j.physleta.2005.01.024
3. Tarasov, V. E., "Continuous medium model for fractal media," Physics Letters A, Vol. 336, 167-174, 2005.
doi:10.1063/1.523395 Google Scholar
4. Stillinger, F. H., "Axiomatic basis for spaces with non-integer dimensions," Journal of Mathematical Physics, Vol. 18, 1224-1234, 1977.
doi:10.1088/0305-4470/37/27/009 Google Scholar
5. Palmer, C. and P. N. Stavrinou, "Equations of motion in a non-integer-dimensional space," Journal of Physics A, Vol. 37, 6987-7003, 2004.
doi:10.1007/978-3-642-25358-4 Google Scholar
6. Zubair, M., M. J. Mughal, and Q. A. Naqvi, Electromagnetic Fields and Waves in Fractional Dimensional Space, Springer-Verlag, 2012.
doi:10.1103/PhysRevA.11.42
7. Herrick, D. R. and F. H. Stillinger, "Variable dimensionality in atoms and its effects on the ground state of the helium isoelastic sequence," Physical Review A, Vol. 11, 42-53, 1975.
doi:10.1063/1.446210 Google Scholar
8. Pfeifer, P. and D. Avnir, "Chemistry in non-integer dimensions between two and three. I. Fractal theory of heterogeneous surfaces," Journal of Chemical Physics, Vol. 79, 3558-3565, 1983. Google Scholar
9. Muslih, S. I., M. Saddallah, D. Baleanu, and E. Rabei, "Lagrangian formulation of Maxwell’s field in fractional D dimensional space-time," Romanian Journal of Physics, Vol. 55, 659-663, 2010. Google Scholar
10. Muslih, S. I., M. Saddallah, D. Baleanu, and E. Rabei, "Lagrangian formulation of Maxwell’s field in fractional D dimensional space-time," Romanian Reports of Physics, Vol. 55, 659-663, 2010.
doi:10.2528/PIERL10102103 Google Scholar
11. Zubair, M., M. J. Mughal, and Q. A. Naqvi, "The wave equation and general plane wave solutions in fractional space," Progress In Electromagnetics Research Letters, Vol. 19, 137-146, 2010.
doi:10.2528/PIER11021508 Google Scholar
12. Zubair, M., M. J. Mughal, and Q. A. Naqvi, "An exact solution of the cylindrical wave equation for electromagnetic field in fractional dimensional space," Progress In Electromagnetics Research, Vol. 114, 443-455, 2011. Google Scholar
13. Zubair, M., M. J. Mughal, and Q. A. Naqvi, "An exact solution of the spherical wave equation in D-dimensional fractional space," Journal of Electromagnetics Waves and Applications, Vol. 25, No. 10, 1481-1491, 2011.
doi:10.1016/j.ijleo.2015.12.019 Google Scholar
14. Naqvi, Q. A. and M. Zubair, "On cylindrical model of electrostatic potential in fractional dimensional space," Optik-International Journal for Light and Electron Optics, Vol. 127, 3243-3247, 2016.
doi:10.1080/09205071.2015.1032436 Google Scholar
15. Noor, A., A. A. Syed, and Q. A. Naqvi, "Quasi-static analysis of scattering from a layered plasmonic sphere in fractional space," Journal of Electromagnetic Wave and Applications, Vol. 29, No. 8, 1047-1059, 2015.
doi:10.1016/j.ijleo.2017.04.081 Google Scholar
16. Munawar, Y., M. A. Ashraf, Q. A. Naqvi, and M. A. Fiaz, "Two dimensional green’s function for planar grounded dielectric layer in non-integer dimensional space," Optik-International Journal for Light and Electron Optics, Vol. 140, 610-618, 2017.
doi:10.1080/09205071.2016.1276859 Google Scholar
17. Abbas, M., A. A. Rizvi, M. A. Fiaz, and Q. A. Naqvi, "Scattering of electromagnetic plane wave from a low contrast circular cylinder buried in non-integer dimensional half space," Journal of Electromagnetic Waves and Applications, Vol. 31, No. 3, 263-283, 2017.
doi:10.1016/j.ijleo.2017.05.043 Google Scholar
18. Naqvi, Q. A., "Scattering from a cylindrical obstacle buried in non-integer dimensional dielectric half space using kobayashi potential method," Optik-International Journal for Light and Electron Optics, Vol. 141, 39-49, 2017.
doi:10.1007/s10582-006-0093-7 Google Scholar
19. Sadallah, M., S. I. Muslih, and D. Baleanu, "Equations of motion for Einstein’s field in non-integer dimensional space," Czechoslovak Journal of Physics, Vol. 56, 323-328, 2006.
doi:10.1080/09205071.2013.840543 Google Scholar
20. Khan, S. and M. J. Mughal, "General solution for TEM, TE, and TM waves in fractional dimensional space and its application in rectangular waveguide filled with fractional space," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 18, 2298-2307, 2013.
doi:10.1016/j.physleta.2015.06.032 Google Scholar
21. Tarasov, V. E., "Fractal electromagnetics via non-integer dimensional space approach," Physics Letters A, Vol. 379, 2055-2061, 2015.
doi:10.1016/j.cnsns.2014.05.025 Google Scholar
22. Tarasov, V. E., "Vector calculus in non-integer dimensional space and its applications to fractal media," Journal of Communications in Nonlinear Science and Numerical Simulation, Vol. 21, No. 2, 360-374, 2015.
doi:10.1063/1.4892155 Google Scholar
23. Tarasov, V. E., "Anisotropic fields media by vector calculus in non-integer dimensional space," Journal of Mathematical Physics, Vol. 55, 083510, 2014.
doi:10.1080/09205071.2017.1358108 Google Scholar
24. Naqvi, Q. A. and M. A. Fiaz, "Electromagnetic behavior of a planar interface of non-integer dimensional spaces," Journal of Electormagnetic Waves and Applications, Vol. 31, No. 16, 1625-1637, 2017. Google Scholar
25. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, U.S. Department of Commerce, 1972.
doi:10.1016/j.physleta.2013.01.030
26. Balankin, A. S., B. Mena, J. Patino, and D. Morales, "Electromagnetic fields in fractional continua," Physics Letter A, Vol. 377, 783-788, 2013.
doi:10.2528/PIERM12121903 Google Scholar
27. Omar, M. and M. J. Mughal, "Behavior of electromagnetic waves at dielectric fractal-fractal interface in fractional spaces," Progress in Electromagnetic Research M, Vol. 28, 229-244, 2013. Google Scholar