Vol. 68
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-04-24
Implementation of Compact LPF Utilizing Defected Structures and Surface Mount Capacitor for Low Insertion Loss and Elliptic Characteristics
By
Progress In Electromagnetics Research M, Vol. 68, 21-29, 2018
Abstract
Compact size microstrip low-pass filters with sharp cutoff characteristics, narrow passband, low insertion loss, high attenuation in stopband, and low cost are highly required in modern wireless communication systems. They are used to suppress the unwanted harmonics and noise caused by Radio Frequency (RF) front ends. In this paper, a new design for compact microstrip LPF is proposed. It is based on utilization of Stepped Impedance Resonators (SIR), Defected Microstrip Structure (DMS), Dumbbell-shaped Defected Ground Structure (DB-DGS), and surface mount capacitor. The filter is realized on an F4B-2 substrate with εr=2.65, thickness h=0.5 mm and loss tangent δ=0.0013. The design is carried out using CST-Microwave Studio software. The equivalent circuit of the filter is analyzed and presented using ADS2006A software. The filter exhibits sharp cutoff frequency fc=1.7654 GHz, wide stopband from 1.7654 GHz to 7 GHz with |S21| less than -10 dB, insertion loss less than 0.15 dB in passband, and reduced size compared to the traditional LPF.
Citation
Alaa Mohammed Abada, Amr Hussein Hussein Abdullah, and Mohmoud Ahmed Attia Ali, "Implementation of Compact LPF Utilizing Defected Structures and Surface Mount Capacitor for Low Insertion Loss and Elliptic Characteristics," Progress In Electromagnetics Research M, Vol. 68, 21-29, 2018.
doi:10.2528/PIERM18020903
References

1. Hong, J. S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley and Sons, 2001.
doi:10.1002/0471221619

2. Xi, D., Y.-Z. Yin, L.-H. Wen, Y. Mo, and Y. Wang, "A compact low-pass filter with sharp cut-off and low insertion loss characteristic using novel defected ground structure," Progress In Electromagnetics Research Letters, Vol. 17, 133-143, 2010.
doi:10.2528/PIERL10062501

3. Al-Din Makki, S. V., A. Ahmadi, S. Majidifar, H. Sariri, and Z. Rahmani, "Sharp response microstrip LPF using folded stepped impedance open stubs," Radio Engineering, Vol. 22, 328-332, 2013.

4. Mukesh, K. K., K. K. Binod, and K. Sachin, "Defected ground structure: fundamentals, analysis, and applications in modern wireless trends," Hindawi International Journal of Antennas and Propagation, Vol. 2017, 1-23, 2017.

5. Kumar, A., H. Alavi, J. A. Mix, E. C. Beltran, E. C. Perez, A. J. Vera, and H. V. Cruz, "Design of nine pole microstrip low pass filter with metal loaded defected ground structure," IEEE MTT-S Latin America Microwave Conference (LAMC-2016), 12-14, Puerto Vallarta, Mexico, 2016.

6. Ning, J., L. Chen, C. Zeng, and S. Bu, "A compact elliptic-function low-pass filter using stepped-impedance coupled microstrip resonators," IEEE Microwave, 1557-1562, 2014.

7. Belbachir, A. K., M. Boussouis, and N. Amar Touhami, "High-performance LPF using coupled C-shape DGS and radial stub resonators for microwave mixer," Progress In Electromagnetics Research Letters, Vol. 58, 97-103, 2016.
doi:10.2528/PIERL15090105

8. Arjun, K. and M. V. Kartikeyan, "Design and realization of microstrip filters with new defected ground structure (DGS)," Engineering Science and Technology, An International Journal, Vol. 20, 679-686, 2017.
doi:10.1016/j.jestch.2016.10.015

9. Mondal, P., H. Dey, and S. K. Parui, "Design of microstrip lowpass filter in combination with defected ground and defected microstrip structures," Computational Advancement in Communication Circuits and Systems, Lecture Notes in Electrical Engineering, Vol. 335, 61-66, Springer, New Delhi, 2015.

10. Ahmed, B., A. I. Ahmed, and P. B. Edmund, "Design of a novel ultrawide stopband lowpass filter using a DMS-DGS technique for radar applications," International Journal of Microwave Science and Technology Hindawi Publishing Corporation, Vol. 2015, 1-7, 2015.

11. Packiaraj, D., K. J. Vinoy, M. Ramesh, and A. T. Kalghatgi, "Design of compact low pass filter with wide stop band using tri-section stepped impedance resonator," Int. J. Electron. Commun. (AEÜ), Vol. 65, 1012-1014, 2011.
doi:10.1016/j.aeue.2011.03.018

12. Kumud, R. J. and R. Manish, "Modification in microstrip low pass filter using bulb shape patch," Int. J. Electron. Commun. (AEÜ), Vol. 63, 1076-1079, 2009.
doi:10.1016/j.aeue.2008.08.007

13. Zhang, P. and M. Li, "A novel compact microstrip lowpass filter with sharp transition and improved stopband," TELKOMNIKA Indonesian Journal of Electrical Engineering, Vol. 13, No. 1, 85-90, 2015.
doi:10.11591/telkomnika.v13i1.6760