Vol. 75
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-04-09
Quasi-Millimeter Wave Technique Used for Image of Wood
By
Progress In Electromagnetics Research Letters, Vol. 75, 19-24, 2018
Abstract
A quasi-millimeter electromagnetic wave with the frequency of 22-30 GHz is applied to detect knots and holes in wood samples. It has better spatial resolution while keeping good transmission properties compared to microwave region used in the previous experiments. The images of knots and holes in wood are clearly obtained by analyzing the phase and amplitude of the transmitted wave. And the phase measurement results are all better than amplitude results according to phase values changing much more than amplitude.
Citation
Dan Zhang, Chujing Zong, and Atsushi Mase, "Quasi-Millimeter Wave Technique Used for Image of Wood," Progress In Electromagnetics Research Letters, Vol. 75, 19-24, 2018.
doi:10.2528/PIERL18021902
References

1. Hansson, L., N. Lundgren, A. L. Antti, and O. Hagman, "Microwave penetration in wood using imaging sensor," Meas., Vol. 38, 15, 2005.
doi:10.1016/j.measurement.2005.03.007

2. Johansson, J., O. Hagman, and B. A. Fjellner, "Predicting moisture content and density distribution of Scots pine by microwave scanning of sawn timber," Wood Sci., Vol. 49, 312, 2003.
doi:10.1007/s10086-002-0493-7

4. Schajar, G. S. and F. B. Orhan, "Microwave non-destructive testing of wood and similar orthotropic materials ," Subsurf Sens. Technol. Appl., Vol. 6, 293, 2005.
doi:10.1007/s11220-005-0014-z

5. Fujii, Y., Y. Fujiwara, Y. Yanase, T. Mori, T. Yoshimura, M. Nakajima, H. Tsusumi, M. Mori, and H. Kurisaki, "Development of radar apparatus for scanning of wooden-wall to evaluate inner structure and bio-degradation non-destructively," Adv. Mater. Res., Vol. 778, 289, 2013.
doi:10.4028/www.scientific.net/AMR.778.289

6. Baradit, E., R. Aedo, and J. Correa, "Knot detection in wood using microwaves," Wood Sci.Technol., Vol. 40, 118, 2006.
doi:10.1007/s00226-005-0027-8

7. Goldsmith, P. F., C. T. Hsieh, G. R. Huguenin, J. Kapitzky, and E. L. Moore, "Focal plane imaging systems for millimeter-wavelengths," IEEE Trans. Microw. Theory. Tech., Vol. 41, 1644, 1993.
doi:10.1109/22.247910

8. Tanaka, S., Y. Fujiwara, Y. Fujii, S. Okumura, H. Togo, N. Kukutsuand, and S. Mochizuki, "Effect of annual rings on transmission of 100 GHz millimeter waves through wood," J. Wood Sci., Vol. 59, 375, 2013.
doi:10.1007/s10086-013-1342-6

9. Tanaka, S., Y. Fujiwara, Y. Fujii, S. Okumura, H. Togo, N. Kukutsu, and T. Nagatsuma, "Effect of grain direction on transmittance of 100-GHz millimeter wave for hinoki (Chamaecyparis obtusa)," J. Wood Sci., Vol. 57, 189, 2011.
doi:10.1007/s10086-010-1160-z

10. Oyama, Y., L. Zhen, T. Tanabe, and M. Kagaya, "Sub-terahertz imaging of defects in building blocks," NDT&E Int., Vol. 42, 28, 2009.
doi:10.1016/j.ndteint.2008.08.002

11. Wilcox, W. W., "Review of literature on the effects of early stages of decay on wood strength," Wood Fiber, Vol. 9, 252, 1978.