Vol. 75
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-05-02
Meta-Surface Wall Suppression of Mutual Coupling Between Microstrip Patch Antenna Arrays for THz -Band Applications
By
Progress In Electromagnetics Research Letters, Vol. 75, 105-111, 2018
Abstract
This paper presents a novel 2D meta-surface wall to increase the isolation between microstrip patch radiators in an antenna array that is operating in the teraherz (THz) band of 139-141 GHz for applications including communications, medical and security screening systems. The meta-surface unit-cell comprises conjoined twin `Y-shape' microstrip structures, which are inter-digitally interleaved together to create the meta-surface wall. The proposed meta-surface wall is free of via holes and defected ground-plane hence easing its fabrication. The meta-surface wall is inserted tightly between the radiating elements to reduce surface wave mutual coupling. For best isolation performance the wall is oriented orthogonal to the patch antennas. The antenna array exhibits a gain of 9.0 dBi with high isolation level of less than -63 dB between transmit and receive antennas in the specified THz-band. The proposed technique achieves mutual coupling suppression of more than 10 dB over a much wider frequency bandwidth (2 GHz) than achieved to date. With the proposed technique the edge-to-edge gap between the transmit and receive patch antennas can be reduced to 2.5 mm. Dimensions of the transmit and receive patch antennas are 5×5 mm2 with ground-plane size of 9×4.25 mm2 when being constructed on a conventional lossy substrate with thickness of 1.6 mm.
Citation
Mohammad Alibakhshikenari, Bal Singh Virdee, Panchamkumar Shukla, Chan Hwang See, Raed A. Abd-Alhameed, Francisco J. Falcone, and Ernesto Limiti, "Meta-Surface Wall Suppression of Mutual Coupling Between Microstrip Patch Antenna Arrays for THz -Band Applications," Progress In Electromagnetics Research Letters, Vol. 75, 105-111, 2018.
doi:10.2528/PIERL18021908
References

1. Jang, H.-S., W.-G. Lim, W.-I. Son, S.-Y. Cha, and J.-W. Yu, "Microstrip patch antenna with high isolation characteristic," Microwave and Opt. Technol. Lett., Vol. 54, No. 4, 973-976, 2012.
doi:10.1002/mop.26727

2. Gou, Y., S. Yang, Q. Zhu, and Z. Nie, "A compact dual-polarized double-shaped patch antenna with high isolation," IEEE Trans. Ant. and Propag., Vol. 61, No. 8, 4349-4353, 2013.
doi:10.1109/TAP.2013.2262664

3. Lu, J., Z. Kuai, X. Zhu, and N. Zhang, "A high-isolation dual-polarization microstrip patch antenna with quasi-cross-shaped coupling slot," IEEE Trans. Ant. and Propag., Vol. 59, No. 7, 2713-2717, 2011.
doi:10.1109/TAP.2011.2152333

4. Chung, Y., S.-S. Jeon, D. Ahn, J.-I. Choi, and T. Itoh, "High isolation dual-polarized patch antenna using integrated defected ground structure," IEEE Microwave and Wireless Comp. Lett., Vol. 14, No. 1, 4-6, 2004.
doi:10.1109/LMWC.2003.821501

5. Li, S., X. Cao, J. Gao, and P. Gao, "High-isolation dual-polarized microstrip antenna via substrate integrated waveguide technology," Radioengineering, Vol. 23, No. 4, 1092-1098, 2014.

6. Chiou, T.-W. and K.-L. Wong, "Broad-band dual-polarized single microstrip patch antenna with high isolation and low cross polarization," IEEE Trans. Ant. and Propag., Vol. 50, No. 3, 399-401, 2002.
doi:10.1109/8.999635

7. Lin, X.-J., Z.-M. Xie, and P.-S. Zhang, "High isolation dual-polarized patch antenna with hybrid ring feeding," Int. Journal of Antennas and Propagation, Vol. 2017, No. 3, 1-6, 2017.

8. Saeidi-Manesh, H., S. Karimkashi, G. Zhang, and R. J. Doviak, "High-isolation low cross-polarization phased array antenna for MPAR application," Radio Science, Vol. 52, No. 12, 1544-1557, 2017.
doi:10.1002/2017RS006304

9. 9., Y. J., A. Herschlein, and W. Wiesbeck, "A Photonic Bandgap (PBG) structure for guiding and suppressing surface waves in millimeter-wave antennas," IEEE Trans. on Microwave Theory and Techniques, Vol. 49, No. 10, 1854-1859, 2001.
doi:10.1109/22.954798

10. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. on Microwave Theory and Techniques, Vol. 47, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001

11. Kildal, P. S. and A. Kishk, "EM modeling of surfaces with stop or go characteristics --- Artificial magnetic conductors and soft and hard surfaces," Applied Computational Electromagnetics Society Journal, Vol. 18, No. 1, 32-40, 2003.

12. Alibakhshikenari, M., M. Vittori, S. Colangeli, B. S. Virdee, A. Andujar, J. Anguera, and E. Limiti, "EM isolation enhancement based on metamaterial concept in antenna array system to support full-duplex application," IEEE Asia Pacific Microwave Conference, Nov. 2017.

13. Kildal, P. S., A. A. Kishk, and S. Maci, "Special issue on artificial magnetic conductors, soft/hard surfaces, and other complex surface," IEEE Trans. Ant. and Propag., Vol. 53, No. 1, Part 1, 2-7, 2005.

14. Yu, A. and X. Zhang, "A novel method to improve the performance of microstrip antenna arrays using a dumbbell EBG structure," IEEE Antennas Wireless Propagation Letters, Vol. 2, No. 1, 170-172, 2003.

15. Farahani, H. S., M. Veysi, M. Kamyab, and A. Tadjalli, "Mutual coupling reduction in patch antenna arrays using a UC-EBG superstate," IEEE Antennas Wireless Propagation Letters, Vol. 9, 57-59, 2010.
doi:10.1109/LAWP.2010.2042565

16. Farsi, S., D. Schreurs, and B. Nauwelaers, "Mutual coupling reduction of planar antenna by using a simple microstrip U-section," IEEE Antennas Wireless Propagation Letters, Vol. 11, 1501-1503, 2012.
doi:10.1109/LAWP.2012.2232274

17. Suwailam, M. M. B., O. F. Siddiqui, and O. M. Ramahi, "Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators," IEEE Antennas Wireless Propagation Letters, Vol. 9, 876-876, 2010.
doi:10.1109/LAWP.2010.2074175

18. Ghosh, J., S. Ghosal, D. Mitra, and S. R. B. Chaudhuri, "Mutual coupling reduction between closely placed microstrip patch antenna using meander line resonator," Progress In Electromagnetic Research Letters, Vol. 59, 115-122, 2016.
doi:10.2528/PIERL16012202