Vol. 68
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-05-21
Enhanced Characteristic Basis Function Method for Solving the Monostatic Radar Cross Section of Conducting Targets
By
Progress In Electromagnetics Research M, Vol. 68, 173-180, 2018
Abstract
In this paper, an enhanced characteristic basis function method (ECBFM) is proposed to calculate the monostatic radar cross section (RCS) of electrical large targets efficiently. The enhanced characteristic basis functions (ECBFs) are defined by combining improved primary-characteristic basis functions (IP-CBFs) with the first level improved secondary-characteristic basis functions (IS-CBFs) for each block. IS-CBFs are obtained by substituting IP-CBFs for PCBFs in Foldy-Lax multiple scattering equation in which mutual coupling effects among all blocks can be included systematically. As a result, a small number of incident plane waves (PWs) is sufficient when dealing withlarge scale targets. The numerical results demonstrate that the computational efficiency in this paper is much higher than that of the improved primary-characteristic basis function method (IP-CBFM) without losing any accuracy.
Citation
Jinyu Zhu, Yufa Sun, and Hongyu Fang, "Enhanced Characteristic Basis Function Method for Solving the Monostatic Radar Cross Section of Conducting Targets," Progress In Electromagnetics Research M, Vol. 68, 173-180, 2018.
doi:10.2528/PIERM18022703
References

1. Harrington, R. F., Field Computation by Moment Methods, IEEE Press, 1993.
doi:10.1109/9780470544631

2. Song, J., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propag., Vol. 45, No. 10, 1488-1493, 1997.
doi:10.1109/8.633855

3. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems," Radio Science, Vol. 31, No. 5, 1225-1251, 1996.
doi:10.1029/96RS02504

4. Zhao, K., M. N. Vouvakis, and J. F. Lee, "The adaptive cross approximation algorithm for accelerated method of moments computations of EMC problems," IEEE Transactions on Electromagnetic Compatibility, Vol. 47, No. 4, 763-773, 2005.
doi:10.1109/TEMC.2005.857898

5. Kwon, S. J., K. Du, and R. Mittra, "Characteristic basis function method: A numerically efficient technique for analyzing microwave and RF circuits," Microwave & Optical Technology Letters, Vol. 38, No. 6, 444-448, 2003.
doi:10.1002/mop.11085

6. Pan, P. Q., "A projective simplex algorithm using LU decomposition," Computers & Mathematics with Applications, Vol. 39, No. 1, 187-208, 2000.
doi:10.1016/S0898-1221(99)00323-5

7. Lucente, E., A. Monorchio, and R. Mittra, "An iteration-free MoM approach based on excitation independent characteristic basis functions for solving large multiscale electromagnetic scattering problems," IEEE Trans. Antennas Propag., Vol. 56, No. 4, 999-1007, 2008.
doi:10.1109/TAP.2008.919166

8. Tanaka, T., Y. Inasawa, Y. Nishioka, and H. Miyashita, "Improved primary-characteristic basis function method for monostatic radar cross section analysis of specific coordinate plane," IEICE Transactions on Electronics, Vol. E99, No. 1, 28-35, 2016.
doi:10.1587/transele.E99.C.28

9. Tsang, L., C. E. Mandt, K. H. Ding, and V. F. T. Article, "Monte Carlo simulations of the extinction rate of dense media with randomly distributed dielectric spheres based on solution of Maxwell’s equations," Optics Letters, Vol. 17, No. 5, 314-316, 1992.
doi:10.1364/OL.17.000314

10. Sun, Y. F., C. H. Chan, and R. Mittra, "Characteristic basis function method for solving large problems arising in dense medium scattering," IEEE Antennas and Propagation Society International Symposium, Vol. 2, 1068-1071, 2003.

11. Bebendorf, M. and S. Kunis, "Recompression techniques for adaptive cross approximation," Journal of Integral Equations & Applications, Vol. 21, No. 2009, 331-357, 2007.

12. Seo, S. M. and J. F. Lee, "A single-level low rank IE-QR algorithm for PEC scattering problems using EFIE formulation," IEEE Trans. Antennas Propag., Vol. 52, No. 8, 2141-2146, 2004.
doi:10.1109/TAP.2004.832367

13. Burkholder, R. J. and J. F. Lee, "Fast dual-MGS block-factorization algorithm for dense MoM matrices," IEEE Trans. Antennas Propag., Vol. 52, No. 7, 1693-1699, 2004.
doi:10.1109/TAP.2004.831333