Vol. 72
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-08-21
Design of a Compact MIMO Antenna for Wireless Applications
By
Progress In Electromagnetics Research M, Vol. 72, 115-124, 2018
Abstract
This paper presents a dual-band Multi-Input Multi-Output (MIMO) antenna design with acceptable isolation and compact size for wireless applications. The proposed antenna operates at two frequencies (2.75 GHz-5.3 GHz) and consists of two symmetrical monopoles with a T-shaped junction that is added on the upper layer of the substrate and used to connect the two monopoles and the ground plane. The T-shaped junction is added to enhance the isolation between the two antennas. Different forms of slots have been etched on the ground plane to adapt the frequency bands to the desired frequencies. The simulations and measurement are used to examine the performance of the antenna in terms of S parameters, radiation patterns and the envelope of correlation coefficient. The results show that the MIMO antenna has two resonance frequencies (2.75 GHz and 5.3 GHz), is suitable for WLAN applications and comes with a mutual coupling that is less than 12 dB. As a result, an envelope correlation coefficient lower than 0.001 and a diversity gain higher than 9.98 dB are obtained, which means that the antenna has a remarkable diversity gain at operating bands.
Citation
Aziz Dkiouak, Alia Zakriti, Mohssine El Ouahabi, Asmaa Zugari, and Mohsine Khalladi, "Design of a Compact MIMO Antenna for Wireless Applications," Progress In Electromagnetics Research M, Vol. 72, 115-124, 2018.
doi:10.2528/PIERM18030103
References

1. Chen, S.-C., Y.-S.Wang, and S.-J. Chung, "A decoupling technique for increasing the port isolation between two strongly coupled antennas," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 12, 3650-3658, 2008.
doi:10.1109/TAP.2008.2005469

2. Chiu, C. Y., C. H. Cheng, R. D. Murch, and C. R. Rowell, "Reduction of mutual coupling between closely-packed antenna element," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 6, 1732-1738, Jun. 2007.
doi:10.1109/TAP.2007.898618

3. Weng, L. H., Y.-C. Guo, X.-W. Shi, and X.-Q. Chen, "An overview on defected ground structure," Progress In Electromagnetics Research B, Vol. 7, 173-189, 2008.
doi:10.2528/PIERB08031401

4. Wang, Y. and Z. W. Du, "A wideband printed dual-antenna system with a novel neutralization line for mobile terminals," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1428-1431, Jun. 2013.
doi:10.1109/LAWP.2013.2287199

5. Makinen, R., V. Pynttari, J. Heikkinen, and M. Kivikoski, "Improvement of antenna isolation in hand-held devices using miniaturized electromagnetic band-gap structures," Microwave & Optical Tech. Lett., Vol. 49, No. 10, 2508-2513, 2007.
doi:10.1002/mop.22761

6. Lee, Y., H. Chung, J. Ha, and L. Choi, "Design of a MIMO antenna with improved isolation using meta-material," International Workshop on Antennas Technology (iWAT’11), 231-234, 2011.

7. Yahya, L. S., K. H. Sayidmarie, F. Elmegri, and R. A. Abd-Alhameed, "Arc-shaped monopole antennas with reduced coupling for WLAN and WiMAX applications," International Conference on Internet Technologies and Applications (ITA), 218-223, UK, Sep. 2017.

8. Sayidmarie, K. H., L. S. Yahya, and R. A. Abd-Alhameed, "Crescent-shaped monopoles with reduced coupling for WLAN andWIMAX applications," Sixth International Conference on Internet Technologies & Applications, Wales, UK, Sep. 8–11, 2015.

9. Qin, H. and Y.-F. Liu, "Compact dual-band MIMO antenna with high port isolation for WLAN applications," Progress In Electromagnetic Research C, Vol. 49, 97-104, 2014.
doi:10.2528/PIERC14021901

10. Zhao, W., L. Liu, S. W. Cheung, and Y. Cao, "Dual-band MIMO antenna using double-T structure for WLAN applications," International Workshop on Antenna Technology (iWAT), 2014.

11. Xia, X.-X., Q.-X. Chu, and J.-F. Li, "Design of a compact wideband MIMO antenna for mobile terminals," Progress In Electromagnetics Research C, Vol. 41, 163-174, 2013.
doi:10.2528/PIERC13042104

12. Chen, F.-C., Q.-X. Chu, and Z.-H. Tu, "Design of compact dual-band bandpass filter using short stub loaded resonator," Microwave and Optical Technology Letters, Vol. 51, No. 4, Apr. 2009.

13. Dama, Y. A. S., R. A. Abd-Alhameed, S. M. R. Jones, D. Zhou, N. J. McEwan, M. B. Child, and P. S. Excell, "An envelope correlation formula for (N, N) MIMO antenna arrays using input scattering parameters, andincluding power losses," International Journal of Antennas and Propagation, Aug. 2011.

14. Iglesias, E. R., "Printed multi-band MIMO antenna systems and their performance metrics," IEEE Antennas and Propagation Magazine, Vol. 55, No. 5, 218-232, Oct. 2013.
doi:10.1109/MAP.2013.6735521

15. Sharawi, M. S., A. B. Numan, and D. N. Aloi, "Isolation improvement in a dual-bad dual-element MIMO antenna system using capacitively loaded loops," Progress In Electromagnetics Research, Vol. 134, 247-266, 2013.
doi:10.2528/PIER12090610

16. Ghouz, H. H. M., "Novel compact and dual-broadband microstrip MIMO antennas for wireless applications," Progress In Electromagnetics Research B, Vol. 63, 107-121, 2015.
doi:10.2528/PIERB15051304