1. El Gawhary, O. and S. Severini, "Lorentz beams and symmetry properties in paraxial optics," Journal of Optics A: Pure and Applied Optics, Vol. 8, 409-414, 2006.
doi:10.1088/1464-4258/8/5/007 Google Scholar
2. Zhao, C. and Y. Cai, "Paraxial propagation of Lorentz and Lorentz-Gauss beams in uniaxial crystals orthogonal to the optical axis," J. Mod. Optics, Vol. 57, 375-384, 2010.
doi:10.1080/09500341003640079 Google Scholar
3. Ni, Y. Z. and G. Q. Zhou, "Nonparaxial propagation of Lorentz-Gauss vortex beams in uniaxial crystals orthogonal to the optical axis," Appl. Phys. B: Lasers O, Vol. 108, 883-890, 2012.
doi:10.1007/s00340-012-5118-2 Google Scholar
4. Zhou, G. Q., "Characteristics of paraxial propagation of a super Lorentz-Gauss SLG(01) mode in uniaxial crystal orthogonal to the optical axis," Chinese Phys. B, Vol. 21, 054104, 2012.
doi:10.1088/1674-1056/21/5/054104 Google Scholar
5. Liu, D., H. Yin, G. Wang, and Y. Wang, "Propagation properties of a partially coherent Lorentz beam in uniaxial crystal orthogonal to the optical axis," Journal of the Optical Society of America A, Vol. 34, 953-960, 2017.
doi:10.1364/JOSAA.34.000953 Google Scholar
6. Zhou, G. Q., "Propagation of a partially coherent Lorentz-Gauss beam through a paraxial ABCD optical system," Opt. Express, Vol. 18, 4637-4643, 2010.
doi:10.1364/OE.18.004637 Google Scholar
7. Zhou, G., "Average intensity and spreading of super Lorentz-Gauss modes in turbulent atmosphere," Appl. Phys. B: Lasers O, Vol. 101, 371-379, 2010.
doi:10.1007/s00340-010-3974-1 Google Scholar
8. Zhou, G. and X. Chu, "M(2)-factor of a partially coherent Lorentz-Gauss beam in a turbulent atmosphere," Appl. Phys. B: Lasers O, Vol. 100, 909-915, 2010.
doi:10.1007/s00340-010-4046-2 Google Scholar
9. Zhou, P., X. Wang, Y. Ma, H. Ma, X. Xu, and Z. Liu, "Average intensity and spreading of a Lorentz beam propagating in a turbulent atmosphere," J. Opt.-Uk, Vol. 12, 015409, 2010.
doi:10.1088/2040-8978/12/1/015409 Google Scholar
10. Zhou, G. Q., "Propagation of a radial phased-locked Lorentz beam array in turbulent atmosphere," Opt. Express, Vol. 19, 24699-24711, 2011.
doi:10.1364/OE.19.024699 Google Scholar
11. Zhao, C. L. and Y. J. Cai, "Propagation of partially coherent Lorentz and Lorentz-Gauss beams through a paraxial ABCD optical system in a turbulent atmosphere," J. Mod. Optics, Vol. 58, 810-818, 2011.
doi:10.1080/09500340.2011.573591 Google Scholar
12. Liu, D., H. Yin, G. Wang, and Y. Wang, "Propagation of partially coherent Lorentz-Gauss vortex beam through oceanic turbulence," Appl. Optics, Vol. 56, 8785-8792, 2017.
doi:10.1364/AO.56.008785 Google Scholar
13. Liu, D., G. Wang, and Y. Wang, "Average intensity and coherence properties of a partially coherent Lorentz-Gauss beam propagating through oceanic turbulence," Optics & Laser Technology, Vol. 98, 309-317, 2018.
doi:10.1016/j.optlastec.2017.08.011 Google Scholar
14. Liu, D., Y. Wang, G. Wang, and H. Yin, "Influences of oceanic turbulence on Lorentz Gaussian beam," Optik - International Journal for Light and Electron Optics, Vol. 154, 738-747, 2018.
doi:10.1016/j.ijleo.2017.10.113 Google Scholar
15. Zhou, G. Q., "Nonparaxial propagation of a super-Lorentz-Gauss SLG(01) mode beam," Chinese Phys. B, Vol. 19, 2010. Google Scholar
16. Zhou, G., "Propagation of vectorial Lorentz beam beyond the paraxial approximation," J. Mod. Optics, Vol. 55, 3573-3579, 2008.
doi:10.1080/09500340802346078 Google Scholar
17. Yu, H., L. L. Xiong, and B. D. Lu, "Nonparaxial Lorentz and Lorentz-Gauss beams," Optik, Vol. 121, 1455-1461, 2010.
doi:10.1016/j.ijleo.2009.02.005 Google Scholar
18. Baykal, Y., "Scintillation index in strong oceanic turbulence," Opt. Commun., Vol. 375, 15-18, 2016.
doi:10.1016/j.optcom.2016.05.002 Google Scholar
19. Baykal, Y., "Fourth-order mutual coherence function in oceanic turbulence," Appl. Optics, Vol. 55, 2976-2979, 2016.
doi:10.1364/AO.55.002976 Google Scholar
20. Zhou, Y., Q. Chen, and D. M. Zhao, "Propagation of astigmatic stochastic electromagnetic beams in oceanic turbulence," Appl. Phys. B: Lasers O, Vol. 114, 475-482, 2014.
doi:10.1007/s00340-013-5545-8 Google Scholar
21. Liu, D. J., Y. C. Wang, and H. M. Yin, "Evolution properties of partially coherent flat-topped vortex hollow beam in oceanic turbulence," Appl. Optics, Vol. 54, 10510-10516, 2015.
doi:10.1364/AO.54.010510 Google Scholar
22. Yang, T., X. L. Ji, and X. Q. Li, "Propagation characteristics of partially coherent decentred annular beams propagating through oceanic turbulence," Acta Phys. Sin.-Ch. Ed., Vol. 64, 204206, 2015. Google Scholar
23. Huang, Y. P., B. Zhang, Z. H. Gao, G. P. Zhao, and Z. C. Duan, "Evolution behavior of Gaussian Schell-model vortex beams propagating through oceanic turbulence," Opt. Express, Vol. 22, 17723-17734, 2014.
doi:10.1364/OE.22.017723 Google Scholar
24. Xu, J. and D. M. Zhao, "Propagation of a stochastic electromagnetic vortex beam in the oceanic turbulence," Opt. Laser Technol., Vol. 57, 189-193, 2014.
doi:10.1016/j.optlastec.2013.10.019 Google Scholar
25. Liu, D. J., L. Chen, Y. C. Wang, G. Q. Wang, and H. M. Yin, "Average intensity properties of flat-topped vortex hollow beam propagating through oceanic turbulence," Optik, Vol. 127, 6961-6969, 2016.
doi:10.1016/j.ijleo.2016.04.142 Google Scholar
26. Huang, Y. P., P. Huang, F. H. Wang, G. P. Zhao, and A. P. Zeng, "The influence of oceanic turbulence on the beam quality parameters of partially coherent Hermite-Gaussian linear array beams," Opt. Commun., Vol. 336, 146-152, 2015.
doi:10.1016/j.optcom.2014.09.055 Google Scholar
27. Liu, D., Y. Wang, G. Wang, X. Luo, and H. Yin, "Propagation properties of partially coherent four-petal Gaussian vortex beams in oceanic turbulence," Laser Phys., Vol. 27, 016001, 2017.
doi:10.1088/1555-6611/27/1/016001 Google Scholar
28. Lu, L., Z. Q. Wang, J. H. Zhang, P. F. Zhang, C. H. Qiao, C. Y. Fan, and X. L. Ji, "Average intensity of M×N Gaussian array beams in oceanic turbulence," Appl. Optics, Vol. 54, 7500-7507, 2015.
doi:10.1364/AO.54.007500 Google Scholar
29. Tang, M. M. and D. M. Zhao, "Regions of spreading of Gaussian array beams propagating through oceanic turbulence," Appl. Optics, Vol. 54, 3407-3411, 2015.
doi:10.1364/AO.54.003407 Google Scholar
30. Lu, L., P. F. Zhang, C. Y. Fan, and C. H. Qiao, "Influence of oceanic turbulence on propagation of a radial Gaussian beam array," Opt. Express, Vol. 23, 2827-2836, 2015.
doi:10.1364/OE.23.002827 Google Scholar
31. Dong, Y. M., L. N. Guo, C. H. Liang, F. Wang, and Y. J. Cai, "Statistical properties of a partially coherent cylindrical vector beam in oceanic turbulence," J. Opt. Soc. Am. A, Vol. 32, 894-901, 2015.
doi:10.1364/JOSAA.32.000894 Google Scholar
32. Liu, D. J., Y. C. Wang, G. Q. Wang, H. M. Yin, and J. R. Wang, "The influence of oceanic turbulence on the spectral properties of chirped Gaussian pulsed beam," Opt. Laser Technol., Vol. 82, 76-81, 2016.
doi:10.1016/j.optlastec.2016.02.019 Google Scholar
33. Liu, D. J. and Y. C. Wang, "Average intensity of a Lorentz beam in oceanic turbulence," Optik - International Journal for Light and Electron Optics, Vol. 144, 76-85, 2017.
doi:10.1016/j.ijleo.2017.06.078 Google Scholar
34. Liu, D., Y. Wang, X. Luo, G. Wang, and H. Yin, "Evolution properties of partially coherent four-petal Gaussian beams in oceanic turbulence," J. Mod. Optics, Vol. 64, 1579-1587, 2017.
doi:10.1080/09500340.2017.1300698 Google Scholar
35. Schmidt, P., "A method for the convolution of lineshapes which involve the Lorentz distribution," Journal of Physics B, Vol. 9, 2331-2339, 1976.
doi:10.1088/0022-3700/9/13/018 Google Scholar
36. Jeffrey, H. D. A., Handbook of Mathematical Formulas and Integrals, 4th Ed., Academic Press Inc., 2008.