1. Politano, A., L. Viti, and M. S. Vitiello, "Optoelectronic devices, plasmonics and photonics with topological insulators," APL Materials, Vol. 5, No. 035504, Jun. 2017. Google Scholar
2. Politano, A. and G. Chiarello, "Plasmon modes in graphene: Status and prospect," Nanoscale, Vol. 6, No. 10927, May 2014. Google Scholar
3. Politano, A., A. Cupolillo, G. D. Profio, H. A. Arafat, G. Chiarello, and E. Curcio, "When plasmonics meets membrane technology," J. Phys.: Condens. Matter, Vol. 28, No. 363003, Aug. 2016. Google Scholar
4. Politano, A., G. D. Profioc, V. Sannad, and E. Curcioe, "Overcoming the temperature polarization in membrane distillation by thermoplasmonic effects activated in Ag nanofillers in polymeric membranes," Desalination, Vol. 60, Oct. 2018. Google Scholar
5. Politano, A., P. Argurio, G. D. Profio, V. Sanna, A. Cupolillo, S. Chakraborty, H. A. Arafat, and E. Curcio, "Photothermal membrane distillation for seawater desalination," Adv. Mater., Vol. 29, No. 1603504, Jan. 2016. Google Scholar
6. Viti, L., J. Hu, D. Coquillat, A. Politano, W. Knap, and M. S. Vitiello, "Efficient terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response," Sci. Rep., Vol. 6, No. 20474, Nov. 2016. Google Scholar
7. Viti, L., D. Coquillat, A. Politano, K. Kokh, Z. Aliev, M. Babanly, O. E. Tereshchenko, W. Knap, E. Chulkov, and M. Vitiello, "Plasma-wave terahertz detection mediated by topological insulators surface states," Nano Lett., Vol. 16, No. 80, Dec. 2015. Google Scholar
8. Elwi, T. A., H. M. Al-Rizzo, N. Bouaynaya, M. M. Hammood, and Y. Al-Naiemy, "Theory of gain enhancement of UC-PBG antenna structures without invoking Maxwell’s equations: An array signal processing approach," Progress In Electromagnetics Research B, Vol. 34, 15-30, DOI 10.1007/s11277-017-4950-4, Sep. 2011. Google Scholar
9. Elwi, T. A., "A miniaturized folded antenna array for MIMO applications," Wireless Personal Communications, 1-13, 2017. Google Scholar
10. Brunelli, D., L. Benini, C. Moser, and L. Thiele, "An efficient solar energy harvester for wireless sensor nodes," 2008 Design, Automation and Test in Europe Conference, 104-109, Nov. 2008. Google Scholar
11. Abdin, Z., M. A. Alim, R. Saidur, M. R. Islam, W. Rashmi, and S. Mekhilef, "Solar energy harvesting with the application of nanotechnology," Renew Sustain Energy Rev., Vol. 26, 837-852, Oct. 2011. Google Scholar
12. Ackermann, T. and L. Sqder, "Wind energy technology and current status: A review," Renew Sustain Energy Rev., Vol. 4, 315-374, May 2000.
doi:10.1016/S1364-0321(00)00004-6 Google Scholar
13. Joselin Herbert, G. M., S. Iniyan, E. Sreevalsan, and S. Rajapandian, "A review of wind energy technologies," Renewable and Sustainable Energy Reviews, Vol. 11, 1117-1145, Aug. 2007.
doi:10.1016/j.rser.2005.08.004 Google Scholar
14. Sahin, A. D., "Progress and recent trends in wind energy," Prog. Energy Combust Scivol., Vol. 30, 501-543, Oct. 2013. Google Scholar
15. Lu, X. and S.-H. Yang, "Thermal energy harvesting for WSNs," 2010 IEEE International Conference on Systems Man and Cybernetics (SMC), 3045-3052, Mar. 2011. Google Scholar
16. Dalola, S., V. Ferrari, and D. Marioli, "Pyroelectric effect in PZT thick films for thermal energy harvesting in low-power sensors," Procedia Engvol., Vol. 5, 685-688, Dec. 2012. Google Scholar
17. Al-Adhami, Y. and E. Eçeleb, "Plasmonic metamaterial dipole antenna array circuitry based on flexible solar cell panel for self-powered wireless system," Microwave and Optical Technology Letters, Vol. 59, No. 9, 2365-2371, Sep. 2017.
doi:10.1002/mop.30747 Google Scholar
18. Elwi, T. A., "Electromagnetic band gap structures based an ultra wideband microstrip antenna," Microwave and Optical Technology Letters, Vol. 59, No. 4, 827-834, Feb. 2017.
doi:10.1002/mop.30397 Google Scholar
19. Elwi, T. A., "A miniaturized folded antenna array for MIMO applications," Wireless Personal Communications, 1-13, DOI 10.1007/s11277-017-4950-4, Sep. 2017. Google Scholar
20. Computer Simulation Technology, Microwave Studio (CST MWS), https://www.cst.com, 2014. Google Scholar
21. Azeez, A. R., T. A. Elwi, and Z. A. Abed AL-Hussain, "Design and analysis of a novel concentric rings based crossed lines single negative metamaterial structure," Engineering Science and Technology, An International Journal, Vol. 20, No. 3, 1140-1146, Nov. 2016.
doi:10.1016/j.jestch.2016.11.010 Google Scholar
22. Elwi, T. A., "A further investigation on the performance of the broadside coupled rectangular split ring resonators," Progress In Electromagnetics Research Letters, Vol. 34, 1-8, 2012.
doi:10.2528/PIERL12070409 Google Scholar
23. Ansoft’s High Frequency Structure Simulator HFSS, 2014, Available: http://www.ansoft.com. Google Scholar
24. Ali, E. M., N. Z. Yahaya, N. Perumal, and M. Azman, "A novel rectifying circuit for microwave power harvesting system," International Journal of RF and Microwave Computer-Aided Engineering, Jan. 2017. Google Scholar
25. Almoneef, T. S., F. Erkmen, and O. M. Ramahi, "Harvesting the energy of multipolarized electromagnetic waves," Nature Scientific Reports, DOI:10.1038/s41598-017-15298-5, Nov. 2017. Google Scholar