1. Kim, S. G. and K. Chang, "Ultrawide-band transitions and new microwave components using double-sided parallel-strip lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 9, 2148-2152, 2004.
doi:10.1109/TMTT.2004.834165 Google Scholar
2. Chen, J. X., J. L. Li, and Q. Xue, "Novel via-less double-sided parallel-strip line to coplanar waveguide transition," Microwave and Optical Technology Letters, Vol. 48, No. 9, 1717-1718, 2006.
doi:10.1002/mop.21755 Google Scholar
3. Zhang, X. Y., J. X. Chen, and Q. Xue, "Broadband transition between double-sided parallel-strip line and coplanar waveguide," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 2, 103-105, 2007.
doi:10.1109/LMWC.2006.890329 Google Scholar
4. Lu, W. J., H. Tong, Y. M. Bo, and H. B. Zhu, "Design and study of enhanced wideband transition between coplanar waveguide and broadside coupled stripline," IET Microwaves, Antennas and Propagation, Vol. 7, No. 9, 715-721, 2013.
doi:10.1049/iet-map.2012.0506 Google Scholar
5. Kim, Y. G. and K. W. Kim, "Design of an ultra-wideband transition from double-sided parallel stripline to coplanar waveguide," International Journal of Antennas and Propagation, Article ID 921859, 8 pages, doi:10.1155/2013/921859, 2013. Google Scholar
6. Simons, R. A., Coplanar Waveguide Circuits, Components and Systems, IEEE Press, 2001.
doi:10.1002/0471224758
7. Sun, C.-G. and J.-L. Li, "Design of planar multi-way differential power division network using double-sided parallel stripline," Electron Letters, Vol. 53, No. 20, 1364-1366, 2017.
doi:10.1049/el.2017.2710 Google Scholar
8. Bo, L. W., X. Q. Lin, and F. Cheng, "Electric split-ring resonator based on double-sided parallel-strip line," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 69-71, 2013. Google Scholar
9. Zhong, Z. W., Y. X. Li, Z. X. Liang, and Y. L. Long, "Biplanar monopole with DSPSL feed and coupling line for broadband mobile phone," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1326-1329, 2012.
doi:10.1109/LAWP.2012.2227665 Google Scholar
10. Carro, P. L. and J. Mingo, "Analysis and synthesis of double-sided parallel-strip transitions," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 2, 372-380, 2010.
doi:10.1109/TMTT.2009.2038454 Google Scholar
11. Kumar, B. P. and G. R. Branner, "Optimized design of unique miniaturized planar baluns for wireless applications," IEEE Microwave Wireless Components Letters, Vol. 13, No. 3, 134-136, 2003.
doi:10.1109/LMWC.2003.808717 Google Scholar
12. Staiculescu, D., N. Bushyager, A. Obatoyinbo, L. J. Martin, and M. M. Tentzeris, "Design and optimization of 3-D compact stripline and microstrip Bluetooth/WLAN balun architectures using the design of experiments technique," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 5, 1805-1812, 2005.
doi:10.1109/TAP.2005.846820 Google Scholar
13. Reiche, E. and F. H. Uhlmann, "Application of the FDTD for the optimization of broad-band transitions between different types of transmission lines," IEEE Transactions on Magnetics, Vol. 38, No. 2, 593-596, 2002.
doi:10.1109/20.996155 Google Scholar