Vol. 75
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-05-04
Broadband Vertical Transitions Between Double-Sided Parallel-Strip Line and Coplanar Waveguide
By
Progress In Electromagnetics Research Letters, Vol. 75, 119-124, 2018
Abstract
A pair of broadband double-sided parallel-strip line (DSPSL) to coplanar waveguide (CPW) vertical transitions are presented. The transitions are composed of CPW open end with connected grounds forming two strips of the DSPSL with single via connection. The connected grounds of CPW, which forms top strip of the DSPSL are of two di erent shapes resulting in two transitions (Types 1 & 2). Simulated results for the back-to-back transitions, using the multilayer solver of CST Microwave Studio, show good agreement with the measured ones.
Citation
Kokkadan Jacob Nelson, Arimpoorpallan Lindo, Chandroth K. Aanandan, Pezholil Mohanan, and Kesavath Vasudevan, "Broadband Vertical Transitions Between Double-Sided Parallel-Strip Line and Coplanar Waveguide," Progress In Electromagnetics Research Letters, Vol. 75, 119-124, 2018.
doi:10.2528/PIERL18032602
References

1. Kim, S. G. and K. Chang, "Ultrawide-band transitions and new microwave components using double-sided parallel-strip lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 9, 2148-2152, 2004.
doi:10.1109/TMTT.2004.834165

2. Chen, J. X., J. L. Li, and Q. Xue, "Novel via-less double-sided parallel-strip line to coplanar waveguide transition," Microwave and Optical Technology Letters, Vol. 48, No. 9, 1717-1718, 2006.
doi:10.1002/mop.21755

3. Zhang, X. Y., J. X. Chen, and Q. Xue, "Broadband transition between double-sided parallel-strip line and coplanar waveguide," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 2, 103-105, 2007.
doi:10.1109/LMWC.2006.890329

4. Lu, W. J., H. Tong, Y. M. Bo, and H. B. Zhu, "Design and study of enhanced wideband transition between coplanar waveguide and broadside coupled stripline," IET Microwaves, Antennas and Propagation, Vol. 7, No. 9, 715-721, 2013.
doi:10.1049/iet-map.2012.0506

5. Kim, Y. G. and K. W. Kim, "Design of an ultra-wideband transition from double-sided parallel stripline to coplanar waveguide," International Journal of Antennas and Propagation, Article ID 921859, 8 pages, doi:10.1155/2013/921859, 2013.

6. Simons, R. A., Coplanar Waveguide Circuits, Components and Systems, IEEE Press, Wiley, 2001.
doi:10.1002/0471224758

7. Sun, C.-G. and J.-L. Li, "Design of planar multi-way differential power division network using double-sided parallel stripline," Electron Letters, Vol. 53, No. 20, 1364-1366, 2017.
doi:10.1049/el.2017.2710

8. Bo, L. W., X. Q. Lin, and F. Cheng, "Electric split-ring resonator based on double-sided parallel-strip line," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 69-71, 2013.

9. Zhong, Z. W., Y. X. Li, Z. X. Liang, and Y. L. Long, "Biplanar monopole with DSPSL feed and coupling line for broadband mobile phone," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1326-1329, 2012.
doi:10.1109/LAWP.2012.2227665

10. Carro, P. L. and J. Mingo, "Analysis and synthesis of double-sided parallel-strip transitions," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 2, 372-380, 2010.
doi:10.1109/TMTT.2009.2038454

11. Kumar, B. P. and G. R. Branner, "Optimized design of unique miniaturized planar baluns for wireless applications," IEEE Microwave Wireless Components Letters, Vol. 13, No. 3, 134-136, 2003.
doi:10.1109/LMWC.2003.808717

12. Staiculescu, D., N. Bushyager, A. Obatoyinbo, L. J. Martin, and M. M. Tentzeris, "Design and optimization of 3-D compact stripline and microstrip Bluetooth/WLAN balun architectures using the design of experiments technique," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 5, 1805-1812, 2005.
doi:10.1109/TAP.2005.846820

13. Reiche, E. and F. H. Uhlmann, "Application of the FDTD for the optimization of broad-band transitions between different types of transmission lines," IEEE Transactions on Magnetics, Vol. 38, No. 2, 593-596, 2002.
doi:10.1109/20.996155