1. Liu, J.-X. and W.-Y. Yin, "A compact interdigital capacitor-inserted multiband antenna for wireless communication applications," IEEE Antennas and Propagation Letters, Vol. 9, 922-925, 2010.
doi:10.1109/LAWP.2010.2073435 Google Scholar
2. Lin, D.-B., I.-T. Tang, and E.-T. Chang, "Interdigital capacitor for multiband operation in mobile phone," Progress In Electromagnetics Research C, Vol. 15, 1-12, 2010.
doi:10.2528/PIERC10082304 Google Scholar
3. Joshi, J. G., S. S. Pattnaik, and S. Devi, "Geo-textile based metamaterial loaded wearable microstrip patch antenna," International Journal of Microwave and Optical Technology, Vol. 8, No. 1, January 2013. Google Scholar
4. Bilotti, F., et al. "Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 8, 2258-2267, August 2007.
doi:10.1109/TAP.2007.901950 Google Scholar
5. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Physics USPEKHI, Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699 Google Scholar
6. Joshi, J. G., S. S. Pattnaik, S. Devi, and M. R. Lohokare, "Electrically small patch antenna loaded with metamaterial," IETE Journal of Research, Vol. 56, No. 6, 373-378, December 2010.
doi:10.1080/03772063.2010.10876328 Google Scholar
7. Mcvay, J., V. Pierro, V. Haldi, A. Hoorfar, N. Engheta, and I. M. Pinto, "Metamaterial inclusions based on grid-graph Hamiltonian paths," Proc. 3rd Workshop on Metamaterials and Special Materials for Electromagnetic Applications and TLC, 27, Rome, Italy, March 30-31, 2006. Google Scholar
8. Martin, F., F. Falcone, J. Bonache, T. lopetegi, R Marques, and M. Sorolla, "Miniaturized coplanar waveguide stop band filters based on multiple tuned split ring resonators," IEEE Microw. Wireless Compon. Lett., Vol. 13, No. 12, 511-513, December 2003.
doi:10.1109/LMWC.2003.819964 Google Scholar
9. Bilotti, F., et al. "Equivalent circuit models for the design of metamaterials based in artificial magnetic inclusions," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 12, 2865-2873, December 2007.
doi:10.1109/TMTT.2007.909611 Google Scholar
10. Pendry, J. B., A. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomenon," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2081, November 1999.
doi:10.1109/22.798002 Google Scholar
11. Liu, J.-X. and W.-Y. Yin, "A compact interdigital capacitor-inserted multiband antenna for wireless communication applications ," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 922-925, 2010.
doi:10.1109/LAWP.2010.2073435 Google Scholar
12. Ha, J., K. Kwon, Y. Lee, and J. Choi, "Hybrid mode wideband patch antenna loaded with a planar metamaterial unit cell," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 1143-1147, February 2012.
doi:10.1109/TAP.2011.2173114 Google Scholar
13. Upadhyay, D. K. and S. Pal, "Design of full scanning miniaturized antenna using left handed materials," IEEE International Conference on Devices and Communications, March 24, 2011. Google Scholar
14. Joshi, J. G., S. S. Pattnaik, and S. Devi, "Geo-textile based metamaterial loaded wearable microstrip patch antenna," International Journal of Microwave and Optical Technology, Vol. 8, No. 1, 25-33, January 2013. Google Scholar
15. Huang, H., "Flexible wireless antenna sensor: A review," IEEE Sensors Journal, Vol. 13, No. 1, 3865-3872, October 2013. Google Scholar
16. Dhar, S., R. Ghatak, et al. "A wideband Minkowski fractal dielectric resonator antenna," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 6, 2895-2903, June 2013.
doi:10.1109/TAP.2013.2251596 Google Scholar
17. Erentok, A. and R. W. Ziolkowski, "Metamaterial-inspired efficient electrically small antenna," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 3, 691-707, March 2008.
doi:10.1109/TAP.2008.916949 Google Scholar