Vol. 70
Latest Volume
All Volumes
PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-07-13
Metamaterial Loaded Fractal Based Interdigital Capacitor Antenna for Communication Systems
By
Progress In Electromagnetics Research M, Vol. 70, 127-134, 2018
Abstract
This paper presents a metamaterial loaded interdigital capacitor antenna having fractal geometry. The antenna consists of multiple split ring resonators (MSRR) with shorted ground. The metamaterial loading is achieved by MSRR that enhances the gain. Furthermore, multiband characteristics is obtained by two L-shaped rings providing the fractal geometry. The antenna has the physical dimension of 27 × 39.20 mm for the outer ring and in terms of wavelength has the dimension of 0.486 × 0.707λ. This antenna structure is designed and simulated on an FR-4 epoxy substrate of thickness h = 1.56 mm and dielectric constant εr = 4.4. The antenna resonates at multiple frequencies i.e. 1.5 GHz, 2.2 GHz, 2.70 GHz, 4.20 GHz, 4.9 GHz, 5.3 GHz, 7.2 GHz, 7.5 GHz and 8.8 GHz respectively at different matching values with gains of 9.5 dB, 14.5 dB, 11.9 dB, 3.6 dB, 4 dB, 1.5 dB, 3.8 dB and 6.5 dB. The comparison of the simulated and measured return losses shows a good agreement. The antenna finds its applications in GPS, space and satellite communication, radar, body area network (BAN) communication system.
Citation
Pushkar Mishra, and Shyam Sundar Pattnaik, "Metamaterial Loaded Fractal Based Interdigital Capacitor Antenna for Communication Systems," Progress In Electromagnetics Research M, Vol. 70, 127-134, 2018.
doi:10.2528/PIERM18032801
References

1. Liu, J.-X. and W.-Y. Yin, "A compact interdigital capacitor-inserted multiband antenna for wireless communication applications," IEEE Antennas and Propagation Letters, Vol. 9, 922-925, 2010.
doi:10.1109/LAWP.2010.2073435

2. Lin, D.-B., I.-T. Tang, and E.-T. Chang, "Interdigital capacitor for multiband operation in mobile phone," Progress In Electromagnetics Research C, Vol. 15, 1-12, 2010.
doi:10.2528/PIERC10082304

3. Joshi, J. G., S. S. Pattnaik, and S. Devi, "Geo-textile based metamaterial loaded wearable microstrip patch antenna," International Journal of Microwave and Optical Technology, Vol. 8, No. 1, January 2013.

4. Bilotti, F., et al. "Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 8, 2258-2267, August 2007.
doi:10.1109/TAP.2007.901950

5. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Physics USPEKHI, Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

6. Joshi, J. G., S. S. Pattnaik, S. Devi, and M. R. Lohokare, "Electrically small patch antenna loaded with metamaterial," IETE Journal of Research, Vol. 56, No. 6, 373-378, December 2010.
doi:10.1080/03772063.2010.10876328

7. Mcvay, J., V. Pierro, V. Haldi, A. Hoorfar, N. Engheta, and I. M. Pinto, "Metamaterial inclusions based on grid-graph Hamiltonian paths," Proc. 3rd Workshop on Metamaterials and Special Materials for Electromagnetic Applications and TLC, 27, Rome, Italy, March 30-31, 2006.

8. Martin, F., F. Falcone, J. Bonache, T. lopetegi, R Marques, and M. Sorolla, "Miniaturized coplanar waveguide stop band filters based on multiple tuned split ring resonators," IEEE Microw. Wireless Compon. Lett., Vol. 13, No. 12, 511-513, December 2003.
doi:10.1109/LMWC.2003.819964

9. Bilotti, F., et al. "Equivalent circuit models for the design of metamaterials based in artificial magnetic inclusions," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 12, 2865-2873, December 2007.
doi:10.1109/TMTT.2007.909611

10. Pendry, J. B., A. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomenon," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2081, November 1999.
doi:10.1109/22.798002

11. Liu, J.-X. and W.-Y. Yin, "A compact interdigital capacitor-inserted multiband antenna for wireless communication applications ," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 922-925, 2010.
doi:10.1109/LAWP.2010.2073435

12. Ha, J., K. Kwon, Y. Lee, and J. Choi, "Hybrid mode wideband patch antenna loaded with a planar metamaterial unit cell," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 1143-1147, February 2012.
doi:10.1109/TAP.2011.2173114

13. Upadhyay, D. K. and S. Pal, "Design of full scanning miniaturized antenna using left handed materials," IEEE International Conference on Devices and Communications, March 24, 2011.

14. Joshi, J. G., S. S. Pattnaik, and S. Devi, "Geo-textile based metamaterial loaded wearable microstrip patch antenna," International Journal of Microwave and Optical Technology, Vol. 8, No. 1, 25-33, January 2013.

15. Huang, H., "Flexible wireless antenna sensor: A review," IEEE Sensors Journal, Vol. 13, No. 1, 3865-3872, October 2013.

16. Dhar, S., R. Ghatak, et al. "A wideband Minkowski fractal dielectric resonator antenna," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 6, 2895-2903, June 2013.
doi:10.1109/TAP.2013.2251596

17. Erentok, A. and R. W. Ziolkowski, "Metamaterial-inspired efficient electrically small antenna," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 3, 691-707, March 2008.
doi:10.1109/TAP.2008.916949