Vol. 83
Latest Volume
All Volumes
PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-04-15
GPR Target Signal Enhancement Using Least Square Fitting Background and Multiple Clustering of Singular Values
By
Progress In Electromagnetics Research Letters, Vol. 83, 123-132, 2019
Abstract
Ground penetrating radar is an effective nondestructive method for exploring subsurface object information by exploiting the differences in electromagnetic characteristics. However, this task is negatively affected by the existence of ground clutter and noise especially if the object is weak or/and shallowly buried. Therefore, this paper proposes a novel method for suppressing the clutter and background noise simultaneously in both flat and rough surfaces. First, the ground clutter is removed mainly by applying a simplified least square fitting background method, which remains the residual random noise signal. The remaining signal is then decomposed by singular value decomposition, which assumes that the decomposed signal contains four main components including strong target, weak target, very weak target, and accumulated noise signals. The powered singular values and their differences are clustered by K-means to extract the target signal components. The simulation results indicate that the proposed method is able to enhance the target signal with satisfactory results under both flat and rough surfaces as well as in a high-level background noise. Besides, this method also shows its superiority to the latest existing proposed methods.
Citation
Budiman Putra Asmaur Rohman, and Masahiko Nishimoto, "GPR Target Signal Enhancement Using Least Square Fitting Background and Multiple Clustering of Singular Values," Progress In Electromagnetics Research Letters, Vol. 83, 123-132, 2019.
doi:10.2528/PIERL18042804
References

1. Jol, H. M., Ground Penetrating Radar Theory and Applications, Elsevier, 2008.

2. Mayordomo, A. M. and A. Yarovoy, "Optimal background subtraction in GPR for humanitarian demining," IEEE Radar Conference, 2008, EuRAD 2008, 48-51, European, 2008.

3. Brooks, J. W., L. M. van Kempen, and H. Sahli, "Primary study in adaptive clutter reduction and buried minelike target enhancement from GPR data," Detection and Remediation Technologies for Mines and Minelike Targets V, Vol. 4038, 1183-1193, International Society for Optics and Photonics, 2000.
doi:10.1117/12.396226

4. Brunzell, H., "Detection of shallowly buried objects using impulse radar," IEEE Transactions on Geoscience and Remote Sensing, Vol. 37, No. 2, 875-886, 1999.
doi:10.1109/36.752207

5. Carevic, D., "Wavelet-based method for detection of shallowly buried objects from GPR data," Information, Decision and Control, 1999, IDC 99, Proceedings, 201-206, IEEE, 1999.

6. Baili, J., S. Lahouar, M. Hergli, I. L. Al-Qadi, and K. Besbes, "GPR signal de-noising by discrete wavelet transform," Ndt & E International, Vol. 42, No. 8, 696-703, 2009.
doi:10.1016/j.ndteint.2009.06.003

7. Abujarad, F., G. Nadim, and A. Omar, "Clutter reduction and detection of landmine objects in ground penetrating radar data using singular value decomposition (svd)," Proceedings of the 3rd International Workshop on Advanced Ground Penetrating Radar, 2005, IWAGPR 2005, 37-42, IEEE, 2005.
doi:10.1109/AGPR.2005.1487840

8. Shen, J.-Q., H.-Z. Yan, and C.-Z. Hu, "Auto-selected rule on principal component analysis in ground penetrating radar signal denoising," Chinese Journal of Radio Science, Vol. 1, 17, 2010.

9. Riaz, M. M. and A. Ghafoor, "Ground penetrating radar image enhancement using singular value decomposition," 2013 IEEE International Symposium on Circuits and Systems (ISCAS), 2388-2391, IEEE, 2013.
doi:10.1109/ISCAS.2013.6572359

10. Liu, C., C. Song, and Q. Lu, "Random noise de-noising and direct wave eliminating based on svd method for ground penetrating radar signals," Journal of Applied Geophysics, Vol. 144, 125-133, 2017.
doi:10.1016/j.jappgeo.2017.07.007

11. Zhu, J., W. Xue, X. Rong, and Y. Yu, "A clutter suppression method based on improved principal component selection rule for ground penetrating radar," Progress In Electromagnetics Research M, Vol. 53, 29-39, 2017.
doi:10.2528/PIERM16102903

12. Soldovieri, F., A. F. Morabito, F. D’Agostino, S. I. Ivashov, V. V. Razevig, and I. A. Vasilyev, "A simple processing approach for holographic rascan data," Progress In Electromagnetics Research, Vol. 107, 315-330, 2010.
doi:10.2528/PIER10062905

13. Warren, C., A. Giannopoulos, and I. Giannakis, "gprmax: Open source software to simulate electromagnetic wave propagation for ground penetrating radar," Computer Physics Communications, Vol. 209, 163-170, 2016.
doi:10.1016/j.cpc.2016.08.020

14. Giannakis, I., A. Giannopoulos, and C. Warren, "A realistic fdtd numerical modeling framework of ground penetrating radar for landmine detection," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 9, No. 1, 37-51, 2016.
doi:10.1109/JSTARS.2015.2468597