Vol. 77
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-06-08
Wideband Tunable High Common-Mode Suppression Filter Based on Varactor-Loaded Slotted Ground
By
Progress In Electromagnetics Research Letters, Vol. 77, 73-80, 2018
Abstract
In this study, a varactor-loaded slotted ground structure is investigated and utilized to construct a new tunable common-mode (CM) suppression filter for differential signals. A four-port distributed equivalent circuit model is developed for interpreting the working mechanism of CM signal suppression. It is found that the proposed simple structure is capable of tunable CM suppression with a wide frequency tuning range. The parameter selection and design principle are also given. Finally, the design theory is well vindicated by a common-mode filter using three periodic varactorloaded slots. Simulated and measured results, showing good agreement, exhibit a tuning range from 0.80 to 2.10 GHz, corresponding to the fractional tuning range of 89.7% and more than 30 dB CM rejection level.
Citation
Hao-Yu Dai, and Lin Li, "Wideband Tunable High Common-Mode Suppression Filter Based on Varactor-Loaded Slotted Ground," Progress In Electromagnetics Research Letters, Vol. 77, 73-80, 2018.
doi:10.2528/PIERL18051406
References

1. Bockelman, D. E. and W. R. Eisenstadt, "Combined differential and common-mode scattering parameters -- Theory and simulation," IEEE Trans. Microw. Theory Tech., Vol. 43, No. 7, 1530-1539, 1995.
doi:10.1109/22.392911

2. Wu, S. J. and C. H. Tsai, "A novel wideband common-mode suppression filter for gigahertz differential signals using coupled patterned ground structure," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 4, 848-855, 2009.
doi:10.1109/TMTT.2009.2015087

3. Zhao, X. L. and L. Gao, "Tunable balanced bandpass filter with high common-mode suppression," IET Electron Lett., Vol. 51, No. 24, 2021-2023, 2015.
doi:10.1049/el.2015.1922

4. Zhou, L. H. and Y. L. Ma, "Differential dual-band bandpass filter with tunable lower band using embedded DGS unit for common-mode suppression," IEEE Trans. Microw. Theory Tech., Vol. 64, No. 12, 4183-4191, 2016.
doi:10.1109/TMTT.2016.2607176

5. Safwat, A. M. E. and F. Podevin, "Tunable bandstop defected ground structure resonator using reconfigurable dumbbell-shaped coplanar waveguide," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 9, 3559-3564, 2006.
doi:10.1109/TMTT.2006.880654

6. Chen, J. X. and W. J. Zhou, "Wideband tunable common-mode suppression filter based on varactor-loaded slot-ring resonator for high-speed differential signals," IET Micro. Anten. & Propa., Vol. 11, No. 2, 151-157, 2017.
doi:10.1049/iet-map.2015.0772

7. Mao, J. R., W. Q. Che, and Y. L. Ma, "Tunable differential-mode bandpass filters with wide tuning range and high common-mode suppression," IET Micro. Anten. & Propa., Vol. 8, No. 6, 437-444, 2014.
doi:10.1049/iet-map.2012.0203

8. Zhang, S. X., Z. H. Chen, and Q. X. Chu, "Compact tunable balanced bandpass filter with novel multi-mode resonator," IEEE Micro. Wireless Compon. Lett., Vol. 27, No. 1, 43-45, 2017.
doi:10.1109/LMWC.2016.2629965

9. Qin, W., "Wideband tunable bandpass filter using optimized varactor-loaded SIRs," IEEE Micro. Wireless Compon. Lett., Vol. 27, No. 9, 812-815, 2017.
doi:10.1109/LMWC.2017.2734848

10. Zhu, H. and A. M. Abbosh, "Tunable balanced bandpass filter with wide tuning range of center frequency and bandwidth using compact coupled-line resonator," IEEE Micro. Wireless Compon. Lett., Vol. 26, No. 1, 7-9, 2016.
doi:10.1109/LMWC.2015.2505647

11. Sun, S. H. and B. Z. Wang, "Parameter optimization based on GA and HFSS," Journal of Electro. Scien. Tech. of China, Vol. 3, No. 1, 45-47, 2005.