Vol. 72
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-08-21
Transmission Characteristics on Composite Right/Left-Handed Cylindrical Waveguides Constructed by the Cutoff TE and TM Modes
By
Progress In Electromagnetics Research M, Vol. 72, 89-96, 2018
Abstract
This paper proposes a composite right/left-handed cylindrical waveguide. Negative permeability is realized by the cutoff TM01-mode in a hollow waveguide, and negative permittivity is realized by the cutoff dominant TE-mode in a sector waveguide with a ridge. Usefulness of the proposed cylindrical waveguide is verified from the numerical computations of both the dispersion diagrams and the transmission characteristics of the structure with finite-number unit cells. Finally, measurement of the fabricated waveguides is performed for the experimental verification.
Citation
Shigeyuki Nishimura, Hiroyuki Deguchi, and Mikio Tsuji, "Transmission Characteristics on Composite Right/Left-Handed Cylindrical Waveguides Constructed by the Cutoff TE and TM Modes," Progress In Electromagnetics Research M, Vol. 72, 89-96, 2018.
doi:10.2528/PIERM18053002
References

1. Veselago, V., "The electrodynamics of substrates with simultaneously negative values of ε and μ," Soviet Physics Uspekhil, Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699        Google Scholar

2. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, May 2000.
doi:10.1103/PhysRevLett.84.4184        Google Scholar

3. Alzan, V., et al. "Tailoring the physical properties of nanocomposite films by the insertion of graphene and other nanoparticles," Compos. Part B: Eng., Vol. 60, 29-35, Apr. 2014.        Google Scholar

4. Gugliuzza, A., A. Politano, and E. Drioli, "The advent of graphene and other two-dimensional materials in membrane science and technology," Curr. Opin. Chem. Eng., Vol. 16, 78-85, May 2017.
doi:10.1016/j.coche.2017.03.003        Google Scholar

5. Caloz, C. and T. Itoh, "Transmission line approach of left-handed (LH) materials and microstrip implementation of an artificial LH transmission line," IEEE Trans. Antennas Propagat., Vol. 52, No. 5, 1159-1166, May 2004.
doi:10.1109/TAP.2004.827249        Google Scholar

6. Ikeda, T., K. Sakakibara, T. Matsui, N. Kikuma, and H. Hirayama, "Beam-scanning performance of leaky-wave slot-array antenna on variable stub-loaded left-handed waveguide," IEEE Trans. Antennas Propagat., Vol. 56, No. 12, 3611-3618, Dec. 2008.
doi:10.1109/TAP.2008.2007278        Google Scholar

7. Kim, D. J. and J. H. Lee, "Beam scanning leaky-wave slot Antenna using balanced CRLH waveguide operating above the cutoff frequency," IEEE Trans. Antennas Propagat., Vol. 61, No. 5, 2432-2440, May 2013.
doi:10.1109/TAP.2013.2237740        Google Scholar

8. Eshrah, I. A., A. A. Kishk, A. B. Yakovlev, and A. W. Glisson, "Rectangular waveguide with dielectric-filled corrugations supporting backward waves," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 11, 3298-3304, Nov. 2005.
doi:10.1109/TMTT.2005.855748        Google Scholar

9. Iwasaki, T., H. Kamoda, T. Derham, and T. Kuki, "A composite right/left-handed rectangular waveguide with tilted corrugations for millimeter-wave frequency scanning antenna," 2008 European Microwave Conf., 563-566, Amsterdam, Oct. 2008.        Google Scholar

10. Kord, A. M. and I. A. Eshrah, "Generalised asymptotic boundary conditions and their application to composite right/left-handed rectangular waveguide with double-ridge corrugations," IET Microwaves, Antennas Propagat., Vol. 8, No. 13, 1014-1020, Oct. 2014.
doi:10.1049/iet-map.2013.0326        Google Scholar

11. Semouchkina, E., S. Muduruni, G. Semouchkin, and R. Mittra, "Band-pass filtering by below-cutoff waveguides loaded with split-ring resonators: Relevance to lefthandedness," 2007 IEEE MTT-S Intern’l Symp., 1839-1842, Honolulu, HI, Jun. 2007.        Google Scholar

12. Eldeen, A. M. N. and I. A. Eshrah, "CRLH waveguide with air-filled double-ridge corrugations," 2011 IEEE AP-S Intern’l Symp., 2965-2968, Spokane, WA, Jul. 2011.        Google Scholar

13. Mizutani, Y., M. Kishihara, I. Ohta, K. Okubo, and H. Takimoto, "Constitution of left-handed waveguide using cutoff TM mode," 2014 APMC, 208-210, Sendai, Japan, Nov. 2014.        Google Scholar

14. Oshima, I., T. Seki, N. Michishita, and K. Cho, "Omnidirectional composite right/left-handed leaky-wave antenna with downtilted beam," 2015 IEEE AP-S Intern’l Symp., 2439-2440, Vancouver, BC, Jul. 2015.        Google Scholar

15. Sakamoto, A., K. Cho, N. Michishita, T. Seki, and I. Oshima, "Transmission characteristic comparison between right and left handed leaky wave antennas composed of CRLH coplanar strip line," 2016 ISAP, 828-829, Okinawa, Oct. 2016.        Google Scholar

16. Mohan, M. P. and A. Alphones, "Double periodic CRLH transmission line for wideband performance," 2016 APMC, 1-4, New Delhi, Dec. 2016.        Google Scholar

17. Yang, Q., X. Zhao, and Y. Zhang, "Leaky-wave radiation analysis for CRLH waveguide with long slot on its broadwall," EuCAP 2016, 1-5, Davos, Apr. 2016.        Google Scholar

18. Siaka, F., J. J. Laurin, and R. Deban, "New broad angle frequency scanning antenna with narrow bandwidth based on a CRLH structure," IET Microwaves, Antennas Propaga., Vol. 11, No. 11, 1644-1650, Sep. 2017.
doi:10.1049/iet-map.2016.0732        Google Scholar

19. Siddiqui, Z., A. Radwan, M. Sonkki, M. Tuhkala, and S. Myllymaki, "Leaky coaxial cable antenna based on sinusoidally-modulated reactance surface," 2017 Progress In Electromagnetics Research Symposium — Spring (PIERS), 3887-3890, St Petersburg, Russia, May 22–25, 2017.        Google Scholar

20. Yuki, M., M. Kishihara, and I. Ohta, "Constitution of left-handed waveguide based on cutoff TEand TM-mode," IEICE Transactions on Electronics (Japanese Edition), C-2-67, May 2014.        Google Scholar

21. Nishimura, S., H. Deguchi, and M. Tsuji, "Radiation characteristics in new CRLH cylindrical waveguides," 2015 APCAP, 350-352, Bali Island, Indonesia, Jul. 2015.        Google Scholar

22. Nishimura, S., H. Deguchi, and M. Tsuji, "Transmission characteristic on a partially ridge-loaded composite right/left-handed cylindrical waveguide," 2015 ICEAA Intern’l Conf., 844-846, Torino, Italy, Sep. 2016.        Google Scholar

23. Nishimura, S., H. Deguchi, and M. Tsuji, "Radiation characteristics of leaky-wave antenna using ridge-loaded composite right/left-handed cylindrical waveguides," 2016 IEEE AP-S Intern’l Symp., 85-86, Fajardo, Oct. 2016.        Google Scholar

24. Uyama, K., S. Nishimura, H. Deguchi, and M. Tsuji, "Transmission characteristics of CRLH rectangular waveguides constructed by the cutoff modes of TM and TE waves," 2016 ICEAA Intern’l Conf., 728-731, Cairns, Australia, Sep. 2016.        Google Scholar

25. Mukainoge, Y., H. Deguchi, and M. Tsuji, "An optimized design method of composite right/left handed transmission lines considering higher-order mode interaction by genetic algorithm," 2014 IEEE Intern. Workshop on Electromagnetics, 78-79, Aug. 2014.        Google Scholar