1. Schmidt, R. O., "Multiple emitter location and signal parameter estimation," IEEE Transactions on Antennas and Propagation, Vol. 34, No. 3, 276-280, 1986.
doi:10.1109/TAP.1986.1143830 Google Scholar
2. Rao, B. D. and K. V. S. Hari, "Performance analysis of root-MUSIC," IEEE Transactions on Acoustics Speech & Signal Processing, Vol. 37, No. 12, 1939-1949, 1989.
doi:10.1109/29.45540 Google Scholar
3. Qian, C., L. Huang, and H. C. So, "Improved unitary root-MUSIC for DOA estimation based on pseudo-noise resampling," IEEE Signal Processing Letters, Vol. 21, No. 2, 140-144, 2013.
doi:10.1109/LSP.2013.2294676 Google Scholar
4. Ren, Q. S. and A. J. Willis, "Fast root MUSIC algorithm," Electronics Letters, Vol. 33, No. 6, 450-451, 1997.
doi:10.1049/el:19970272 Google Scholar
5. Ru, B. M. and A. B. Gershman, "Direction-of-arrival estimation for nonuniform sensor arrays: From manifold separation to fourier domain MUSIC methods," IEEE Transactions on Signal Processing, Vol. 57, No. 2, 588-599, 2009.
doi:10.1109/TSP.2008.2008560 Google Scholar
6. Marcos, S., A. Marsal, and M. Benidir, "The propagator method for source bearing estimation," Signal Processing, Vol. 42, No. 2, 121-138, 1995.
doi:10.1016/0165-1684(94)00122-G Google Scholar
7. Tong, M.-S. and C. C. Weng, "Nyström method with edge condition for electromagnetic scattering by 2D open structures," Progress In Electromagnetics Research, Vol. 62, 49-68, 2006.
doi:10.2528/PIER06021901 Google Scholar
8. Drineas, P. and M. W. Mahoney, "On the Nystr¨om method for approximating a gram matrix for improved kernel-based learning ," Journal of Machine Learning Research, Vol. 6, No. 12, 2153-2175, 2005. Google Scholar
9. Williams, C. K. I. and M. Seeger, "Using the Nystr¨om method to speed up kernel machines," International Conference on Neural Information Processing Systems, 661-667, 2000. Google Scholar
10. Fowlkes, C., S. Belongie, F. Chung, and J. Malik, "Spectral grouping using the Nyström method," IEEE Transactions on Pattern Analysis & Machine Intelligence, Vol. 26, No. 2, 214-225, 2004.
doi:10.1109/TPAMI.2004.1262185 Google Scholar
11. Qian, C. and L. Huang, "A low-complexity Nystr¨om-based algorithm for array subspace estimation," Second International Conference on Instrumentation, Measurement, Computer, Communication and Control, 112-114, 2012. Google Scholar
12. Qian, C., L. Huang, and H. C. So, "Computationally efficient ESPRIT algorithm for direction-of-arrival estimation based on Nyström method," Signal Processing, Vol. 94, No. 1, 74-80, 2014.
doi:10.1016/j.sigpro.2013.05.007 Google Scholar
13. Liu, G., H. Chen, X. Sun, and R. C. Qiu, "Modified music algorithm for doa estimation with Nyström approximation," IEEE Sensors Journal, Vol. 16, No. 12, 4673-4674, 2016.
doi:10.1109/JSEN.2016.2557488 Google Scholar
14. Yan, F. G., Y. Shen, and M. Jin, "Fast DOA estimation based on a split subspace decomposition on the array covariance matrix," Signal Processing, Vol. 115, No. 10, 1-8, 2015.
doi:10.1016/j.sigpro.2015.03.008 Google Scholar
15. Sayed, A. H. and T. Kailath, "A survey of spectral factorization methods," Numerical Linear Algebra with Applications, Vol. 8, No. 8, 467-496, 2001.
doi:10.1002/nla.250 Google Scholar
16. Yan, F. G., Y. Shen, M. Jin, and X. Qiao, "Computationally efficient direction finding using polynomial rooting with reduced-order and real-valued computations," Journal of Systems Engineering & Electronics, Vol. 27, No. 4, 739-745, 2016.
doi:10.21629/JSEE.2016.04.01 Google Scholar
17. Yan, F. G., L. Shuai, J. Wang, J. Shi, and M. Jin, "Real-valued root-music for doa estimation with reduced-dimension evd/svd computation," Signal Processing, Vol. 152, No. 5, 1-12, 2018.
doi:10.1016/j.sigpro.2018.05.009 Google Scholar