1. Kelley, D. F. and R. J. Luebbers, "Piecewise linear recursive convolution for dispersive media using FDTD," IEEE Trans. Antennas Propag., Vol. 44, No. 6, 792-797, Jun. 1996.
doi:10.1109/8.509882 Google Scholar
2. Sullivan, D. M., "Frequency dependent FDTD methods using Z transform," IEEE Trans. Antennas Propag., Vol. 40, No. 10, 1223-1230, Oct. 1992.
doi:10.1109/8.182455 Google Scholar
3. Alsunaidi, M. A. and A. A. Al-Jabr, "A general ADE-FDTD algorithm for the simulation of dispersive structures," IEEE Photon. Technol. Lett., Vol. 21, No. 12, 817-819, Jun. 2009.
doi:10.1109/LPT.2009.2018638 Google Scholar
4. Prokopidis, K. P., E. P. Kosmidou, and T. D. Tsiboukis, "An FDTD algorithm for wave propagation in dispersive media using higher-order schemes," J. Electromagnet. Wave, Vol. 18, No. 9, 1171-1194, 2004.
doi:10.1163/1569393042955306 Google Scholar
5. Bokil, V. A. and N. Gibson, "Analysis of spatial high-order finite difference methods for Maxwell’s equations in dispersive media," IMAJ. Numer. Anal., Vol. 32, No. 3, 926-956, 2012.
doi:10.1093/imanum/drr001 Google Scholar
6. Petropoulos, P. G., "Analysis of exponential time-differencing for FDTD in lossy dielectrics," IEEE Trans. Antennas Propag., Vol. 45, No. 6, 1054-1057, Jun. 1997.
doi:10.1109/8.585755 Google Scholar
7. Huang, S. J. and F. Li, "FDTD implementation for magnetoplasma medium using exponential time differencing," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 3, Mar. 2005.
doi:10.1109/LMWC.2005.844219 Google Scholar
8. Kusaf, M., A. Y. Oztoprak, and D. S. Daoud, "Optimized exponential operator coefficients for symplectic FDTD method," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 2, Feb. 2005.
doi:10.1109/LMWC.2004.842827 Google Scholar
9. Xu, Z. and X. Ma, "Integral-based exponential time differencing algorithms for general dispersive media and the CFS-PML," IEEE Trans. Antennas Propag., Vol. 60, No. 7, 3257-3264, Jul. 2012. Google Scholar
10. Xu, Z., X. Ma, and Z. Kang, "Efficient FDTD-PML simulation of gain medium based on exponential time differencing algorithm," IEEE Trans. Antennas Propag., Vol. 61, No. 4, 2123-2129, Apr. 2013.
doi:10.1109/TAP.2012.2233858 Google Scholar
11. Gibbins, D. R., C. J. Railton, I. J. Craddock, and T. N. T. Henriksson, "A numerical study of debye and conductive dispersion in high dielectric materials using a general ADE-FDTD algorithm," IEEE Trans. Antennas Propag., Vol. 64, No. 6, 2401-2409, Apr. 2016.
doi:10.1109/TAP.2016.2550056 Google Scholar