1. Zhao, J. and Y. Cheng, "A high-efficiency and broadband re ective 90◦ linear polarization rotator based on anisotropic metamaterial," Applied Physics B, Vol. 122, No. 10, 255, 2016.
doi:10.1007/s00340-016-6533-6 Google Scholar
2. Zhao, J., Y. Cheng, and Z. Cheng, "Design of a photo-excited switchable broadband re ective linear polarization conversion metasurface for terahertz waves," IEEE Photonics Journal, Vol. 10, No. 1, 1-10, 2018. Google Scholar
3. Fang, C., Y. Cheng, Z. He, J. Zhao, and R. Gong, "Design of a wideband re ective linear polarization converter based on the ladder-shaped structure metasurface," Optik, Vol. 137, 148-155, 2017.
doi:10.1016/j.ijleo.2017.03.002 Google Scholar
4. Cheng, Y. Z., C. Fang, X. S. Mao, R. Z. Gong, and L. Wu, "Design of an ultrabroadband and high- efficiency re ective linear polarization convertor at optical frequency," IEEE Photonics Journal, Vol. 8, No. 6, 1-9, 2016.
doi:10.1109/JPHOT.2016.2624559 Google Scholar
5. Zhao, J. C. and Y. Z. Cheng, "Ultra-broadband and high-efficiency re ective linear polarization convertor based on planar anisotropic metamaterial in microwave region," Optik, Vol. 136, 52-57, 2017.
doi:10.1016/j.ijleo.2017.02.006 Google Scholar
6. Cheng, Y., R. Gong, and L. Wu, "Ultra-broadband linear polarization conversion via diode-like asymmetric transmission with composite metamaterial for terahertz waves," Plasmonics, Vol. 12, No. 4, 1113-1120, 2017.
doi:10.1007/s11468-016-0365-4 Google Scholar
7. Fartookzadeh, M., "Design of metamirrors for linear to circular polarization conversion with super- octave bandwidth," Journal of Modern Optics, Vol. 64, No. 18, 1854-1861, 2017.
doi:10.1080/09500340.2017.1322155 Google Scholar
8. Fartookzadeh, M., "Multi-band metamirrors for linear to circular polarization conversion with wideband and wide-angle performances," Applied Physics B, Vol. 123, No. 4, 115, 2017.
doi:10.1007/s00340-017-6696-9 Google Scholar
9. Chu, R. and K. Lee, "Analytical model of a multilayered meander-line polarizer plate with normal and oblique plane-wave incidence," IEEE Transactions on Antennas and Propagation, Vol. 35, 652-661, 1987. Google Scholar
10. Young, L., L. A. Robinson, and C. Hacking, "Meander-line polarizer," IEEE Transactions on Antennas and Propagation, Vol. 21, No. 3, 376-378, 1973.
doi:10.1109/TAP.1973.1140503 Google Scholar
11. Zhao, R., H.-Y. Chen, L. Zhang, F. Li, P. Zhou, J. Xie, and L.-J. Deng, "Design and implementation of high efficiency and broadband transmission-type polarization converter based on diagonal split- ring resonator," Progress In Electromagnetics Research, Vol. 161, 1-10, 2018.
doi:10.2528/PIER17110604 Google Scholar
12. Lin, B., J. Wu, X. Da, W. Li, and J. Ma, "A linear-to-circular polarization converter based on a second-order band-pass frequency selective surface," Applied Physics A, Vol. 123, No. 1, 43, 2017.
doi:10.1007/s00339-016-0673-8 Google Scholar
13. Cheng, Y., C. Wu, Z. Z. Cheng, and R. Z. Gong, "Ultra-compact multi-band chiral metamaterial circular polarizer based on triple twisted split-ring resonator," Progress In Electromagnetics Research, Vol. 155, 105-113, 2016.
doi:10.2528/PIER16012501 Google Scholar
14. Lin, B., J. Guo, B. Huang, L. Fang, P. Chu, and X. Liu, "Wideband linear-to-circular polarization conversion realized by a transmissive anisotropic metasurface," Chinese Physics B, Vol. 27, No. 5, 054204, 2018.
doi:10.1088/1674-1056/27/5/054204 Google Scholar
15. Zhang, W., J. Li, and J. Xie, "A broadband circular polarizer based on cross-shaped composite frequency selective surfaces," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 10, 5623-5627, 2017.
doi:10.1109/TAP.2017.2735459 Google Scholar
16. Ericsson, A. and D. Sjoberg, "Design and analysis of a multilayer meander line circular polarization selective structure," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 8, 4089-4101, 2017.
doi:10.1109/TAP.2017.2710207 Google Scholar
17. Li, Y., J. Zhang, S. Qu, J. Wang, L. Zheng, Y. Pang, Z. Xu, and A. Zhang, "Achieving wide- band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces," Journal of Applied Physics, Vol. 117, No. 4, 044501, 2015.
doi:10.1063/1.4906220 Google Scholar
18. Tamayama, Y., K. Yasui, T. Nakanishi, and M. Kitano, "A linear-to-circular polarization converter with half transmission and half re ection using a single-layered metamaterial," Applied Physics Letters, Vol. 105, No. 2, 021110, 2014.
doi:10.1063/1.4890623 Google Scholar
19. Akbari, M., M. Farahani, A. Sebak, and T. A. Denidni, "Ka-band linear to circular polarization converter based on multilayer slab with broadband performance," IEEE Access, Vol. 5, 17927-17937, 2017.
doi:10.1109/ACCESS.2017.2746800 Google Scholar
20. Euler, M., V. Fusco, R. Cahill, and R. Dickie, "Comparison of frequency-selective screen-based linear to circular split-ring polarisation convertors," IET Microwaves, Antennas & Propagation, Vol. 4, No. 11, 1764-1772, 2010.
doi:10.1049/iet-map.2009.0415 Google Scholar
21. Euler, M., V. Fusco, R. Cahill, and R. Dickie, "325 GHz single layer sub-millimeter wave FSS based split slot ring linear to circular polarization convertor," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2457-2459, 2010.
doi:10.1109/TAP.2010.2048874 Google Scholar
22. Euler, M., V. Fusco, R. Dickie, R. Cahill, and J. Verheggen, "Sub-mm wet etched linear to circular polarization FSS based polarization converters," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 8, 3103-3106, 2011.
doi:10.1109/TAP.2011.2158973 Google Scholar
23. Wang, J., W. Wu, and Z. Shen, "Improved polarization converter using symmetrical semi-ring slots," 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), 2052-2053, 2014.
doi:10.1109/APS.2014.6905353 Google Scholar
24. Altintas, O., E. Unal, O. Akgol, M. Karaaslan, F. Karadag, and C. Sabah, "Design of a wide band metasurface as a linear to circular polarization converter," Modern Physics Letters B, Vol. 31, No. 30, 1750274, 2017.
doi:10.1142/S0217984917502748 Google Scholar
25. Akgol, O., E. Unal, O. Altintas, M. Karaaslan, F. Karadag, and C. Sabah, "Design of metasurface polarization converter from linearly polarized signal to circularly polarized signal," Optik, Vol. 161, 12-19, 2018.
doi:10.1016/j.ijleo.2018.02.028 Google Scholar
26. Akgol, O., O. Altintas, E. Unal, M. Karaaslan, and F. Karadag, "Linear to left-and right- hand circular polarization conversion by using a metasurface structure," International Journal of Microwave and Wireless Technologies, Vol. 10, No. 1, 133-138, 2018.
doi:10.1017/S1759078717001192 Google Scholar
27. Ma, X., C. Huang, M. Pu, C. Hu, Q. Feng, and X. Luo, "Single-layer circular polarizer using metamaterial and its application in antenna," Microwave and Optical Technology Letters, Vol. 54, No. 7, 1770-1774, 2012.
doi:10.1002/mop.26884 Google Scholar
28. Zhu, H., K. L. Chung, X. Sun, S. W. Cheung, and T. I. Yuk, "CP metasurfaced antennas excited by LP sources," IEEE Antennas and Propagation Society International Symposium, 1-2, 2012. Google Scholar
29. Huang, Y., L. Yang, J. Li, Y. Wang, and G. Wen, "Polarization conversion of metasurface for the application of wide band low-prole circular polarization slot antenna," Applied Physics Letters, Vol. 109, No. 5, 054101, 2016.
doi:10.1063/1.4960198 Google Scholar
30. Fei, P., Z. Shen, X. Wen, and F. Nian, "A single-layer circular polarizer based on hybrid meander line and loop conguration," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 10, 4609-4614, 2015.
doi:10.1109/TAP.2015.2462128 Google Scholar
31. Fei, P., X. Wen, P. Zhang, and W. Guo, "A wideband single-layered circular polarizer with centrosymmetric dual-loop elements," 2016 46th European Microwave Conference (EuMC), 1271-1274, 2016.
doi:10.1109/EuMC.2016.7824582 Google Scholar