Vol. 87
Latest Volume
All Volumes
PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-09-11
Channel Estimation Method for Subarray Based Hybrid Beamforming Systems Employing Sparse Arrays
By
Progress In Electromagnetics Research C, Vol. 87, 25-38, 2018
Abstract
Hybrid beamforming systems are a cost and energy efficient architectural approach for large-scale antenna arrays operating at millimetre-wave frequencies. The separation of the beamforming process into an analogue beamforming network and a digital precoding part enables the reduction of digital channels, while preserving a precise beam steering capability. Especially subarray-based hybrid beamforming systems distinguish them due to a low complex analogue beamforming network. However, to determine the ideal analogue and digital precoding matrices the channel state information has to be estimated. This estimation process is hampered by the electrical interconnection of different antenna elements within the analogue beamforming network. Hence, a separation of the antenna elements of the subarrays in the digital domain is not possible. Furthermore, actual channel estimation methods for hybrid beamforming systems are based on beam training techniques, which suffer from long estimation times. To overcome these problems we developed a two-stage channel estimation method for subarraybased hybrid beamforming systems using sparse array estimations. In the first stage, only one antenna element of each subarray at the transmitter is active during the channel estimation, resulting in a sparse array estimation. To distinguish the transmitters at the receiver side the transmitters are separated in the frequency domain using different orthogonal frequency division multiplexing subcarriers. For recovering the full-dimensional channel matrix we present two algorithms. The first algorithm is based on a two-dimensional interpolation of the channel matrix, while the second algorithm uses multiple subsequent channel measurements. The presented estimation method enables thereby a direct determination of the channel matrix with only one or a few measurements.
Citation
Joerg Eisenbeis, Tobias Mahler, Pablo Ramos Lopez, and Thomas Zwick, "Channel Estimation Method for Subarray Based Hybrid Beamforming Systems Employing Sparse Arrays," Progress In Electromagnetics Research C, Vol. 87, 25-38, 2018.
doi:10.2528/PIERC18062506
References

1. Pi, Z. and F. Khan, "An introduction to millimeter-wave mobile broadband systems," IEEE Communications Magazine, Vol. 49, No. 6, 101-107, Jun. 2011.
doi:10.1109/MCOM.2011.5783993

2. Sun, S., T. S. Rappaport, R. W. Heath, A. Nix, and S. Rangan, "MIMO for millimeter-wave wireless communications: Beamforming, spatial multiplexing, or both?," IEEE Communications Magazine, Vol. 52, No. 12, 110-121, Dec. 2014.
doi:10.1109/MCOM.2014.6979962

3. Federal Communications Commission "FCC takes steps to facilitate mobile broadband and next generation wireless technologies in spectrum above 24 GHz,", 2016.

4. Bjornson, E., E. G. Larsson, and T. L. Marzetta, "Massive MIMO: Ten myths and one critical question," IEEE Communications Magazine, Vol. 54, No. 2, 114-123, Feb. 2016.
doi:10.1109/MCOM.2016.7402270

5. Rusek, F., D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, O. Edfors, and F. Tufvesson, "Scaling up MIMO: Opportunities and challenges with very large arrays," IEEE Signal Processing Magazine, Vol. 30, No. 1, 40-60, Jan. 2013.
doi:10.1109/MSP.2011.2178495

6. Swindlehurst, A., E. Ayanoglu, P. Heydari, and F. Capolino, "Millimeter-wave massive MIMO: The next wireless revolution?," IEEE Communications Magazine, Vol. 52, No. 9, 56-62, 2014.
doi:10.1109/MCOM.2014.6894453

7. Roh, W., J. Y. Seol, J. H. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, and F. Aryanfar, "Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results," IEEE Communications Magazine, Vol. 52, No. 2, 106-113, Feb. 2014.
doi:10.1109/MCOM.2014.6736750

8. Akdeniz, M. R., Y. Liu, M. K. Samimi, S. Sun, S. Rangan, T. S. Rappaport, and E. Erkip, "Millimeter wave channel modeling and cellular capacity evaluation," IEEE Journal on Selected Areas in Communications, Vol. 32, No. 6, 1164-1179, 2014.
doi:10.1109/JSAC.2014.2328154

9. Andrews, J. G., S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. Soong, and J. C. Zhang, "What will 5G be?," IEEE Journal on Selected Areas in Communications, Vol. 32, No. 6, 1065-1082, Jun. 2014.
doi:10.1109/JSAC.2014.2328098

10. Larsson, E. G., O. Edfors, F. Tufvesson, and T. L. Marzetta, "Massive MIMO for next generation wireless systems," IEEE Communications Magazine, Vol. 52, No. 2, 186-195, Feb. 2014.
doi:10.1109/MCOM.2014.6736761

11. Heath, R. W., "Millimeter wave: The future of commercial wireless systems," Technical Digest --- IEEE Compound Semiconductor Integrated Circuit Symposium, CSIC, Vol. 2016-Novem, 1-4, IEEE, Oct. 2016.

12. Molisch, A. F., V. V. Ratnam, S. Han, Z. Li, S. L. H. Nguyen, L. Li, and K. Haneda, "Hybrid beamforming for massive MIMO: A survey," IEEE Communications Magazine, Vol. 55, No. 9, 134-141, 2017.
doi:10.1109/MCOM.2017.1600400

13. Sohrabi, F. and W. Yu, "Hybrid analog and digital beamforming for OFDM-based large-scale MIMO systems," IEEE Workshop on Signal Processing Advances in Wireless Communications, SPAWC, Vol. 2016-Augus, No. 978, 1-5, 2016.

14. Heath, R. W., N. Gonzalez-Prelcic, S. Rangan, W. Roh, and A. M. Sayeed, "An overview of signal processing techniques for millimeter wave MIMO systems," IEEE Journal of Selected Topics in Signal Processing, Vol. 10, No. 3, 436-453, Apr. 2016.
doi:10.1109/JSTSP.2016.2523924

15. Donelli, M., T. Moriyama, and M. Manekiya, "A compact switched-beam planar antenna array for wireless sensors operating at Wi-Fi band," Progress In Electromagnetics Research C, Vol. 83, 137-145, 2018.
doi:10.2528/PIERC18012004

16. Sohrabi, F. and W. Yu, "Hybrid digital and analog beamforming design for large-scale antenna arrays," IEEE Journal of Selected Topics in Signal Processing, Vol. 10, No. 3, 501-513, Apr. 2016.
doi:10.1109/JSTSP.2016.2520912

17. Park, S., A. Alkhateeb, and R. W. Heath, "Dynamic subarrays for hybrid precoding in wideband mmWave MIMO systems," IEEE Transactions on Wireless Communications, Vol. 16, No. 5, 2907-2920, May 2017.
doi:10.1109/TWC.2017.2671869

18. Eisenbeis, J., M. Krause, T. Mahler, S. Scherr, and T. Zwick, "Path based MIMO channel model for hybrid beamforming architecture analysis," Accepted for publishing in Proceedings of the 11th German Microwave Conference (GeMiC), Freiburg, Mar. 12-14, 2018.

19. Song, N., T. Yang, and H. Sun, "Overlapped subarray based hybrid beamforming for millimeter wave multiuser massive MIMO," IEEE Signal Processing Letters, Vol. 24, No. 5, 550-554, May 2017.
doi:10.1109/LSP.2017.2681689

20. Kim, J. and A. F. Molisch, "Fast millimeter-wave beam training with receive beamforming," Journal of Communications and Networks, Vol. 16, No. 5, 512-522, 2014.
doi:10.1109/JCN.2014.000090

21. Xiao, Z., T. He, P. Xia, and X.-G. Xia, "Hierarchical codebook design for beamforming training in millimeter-wave communication," IEEE Transactions on Wireless Communications, Vol. 15, No. 5, 3380-3392, May 2016.
doi:10.1109/TWC.2016.2520930

22. Alkhateeb, A., O. El Ayach, G. Leus, and R. W. Heath, "Channel estimation and hybrid precoding for millimeter wave cellular systems," IEEE Journal on Selected Topics in Signal Processing, Vol. 8, No. 5, 831-846, Oct. 2014.
doi:10.1109/JSTSP.2014.2334278

23. Noh, S., M. D. Zoltowski, and D. J. Love, "Multi-resolution codebook and adaptive beamforming sequence design for millimeter wave beam alignment," IEEE Transactions on Wireless Communications, Vol. 16, No. 9, 5689-5701, Sep. 2017.
doi:10.1109/TWC.2017.2713357

24. Kokshoorn, M., H. Chen, P. Wang, Y. Li, and B. Vucetic, "Millimeter wave MIMO channel estimation using overlapped beam patterns and rate adaptation," IEEE Transactions on Signal Processing, Vol. 65, No. 3, 601-616, 2017.
doi:10.1109/TSP.2016.2614488

25. Zhao, L., D. W. K. Ng, and J. Yuan, "Multi-user precoding and channel estimation for hybrid millimeter wave systems," IEEE Journal on Selected Areas in Communications, Vol. 35, No. 7, 1576-1590, 2017.
doi:10.1109/JSAC.2017.2699378

26. Gao, X., L. Dai, S. Han, C.-L. I, and R. W. Heath, "Energy-efficient hybrid analog and digital precoding for mmWave MIMO systems with large antenna arrays," IEEE Journal on Selected Areas in Communications, Vol. 34, No. 4, 998-1009, Apr. 2016.
doi:10.1109/JSAC.2016.2549418

27. Ayach, O. E., S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, "Spatially sparse precoding in millimeter wave MIMO systems," IEEE Transactions on Wireless Communications, Vol. 13, No. 3, 1499-1513, Mar. 2014.
doi:10.1109/TWC.2014.011714.130846

28. Wu, X., D. Liu, and F. Yin, "Hybrid beamforming for multi-user massive MIMO systems," IEEE Transactions on Communications, Vol. 6778, 2018.

29. Ni, W., X. Dong, and W. S. Lu, "Near-optimal hybrid processing for massive MIMO systems via matrix decomposition," IEEE Transactions on Signal Processing, Vol. 65, No. 15, 3922-3933, 2017.
doi:10.1109/TSP.2017.2699643

30. Mahler, T., T. Deletoille, J. Frey, J. Kowalewski, and T. Zwick, "Applying antenna synthesis methods on a path based MIMO channel model for verification," 2017 47th European Microwave Conference (EuMC), Vol. 1, No. 2, 1349-1352, IEEE, Oct. 2017.

31. Proakis, J. and M. Salehi, Digital Communications, ser. McGraw-Hill International Edition, McGraw-Hill, 2008.

32. 3GPP "Technical specification: LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation; (Release 14),", ETSI TS 136 211, No. V14.3.0, Aug. 2017.

33. LAN/MAN Standards Committee IEEE Std 802.11ad-2012 (Amendment to IEEE Std 802.11-2012, as amended by IEEE Std 802.11ae-2012 and IEEE Std 802.11aa-2012), IEEE, 2012.

34. Mahler, T., J. Kowalewski, B. Nub, C. Richt, J. Mayer, and T. Zwick, "Channel measurement based antenna synthesis for mobile automotive MIMO communication systems," Progress In Electromagnetics Research B, Vol. 72, 1-16, 2017.
doi:10.2528/PIERB16081502

35. Correia, L. M., D. Zeller, O. Blume, D. Ferling, Y. Jading, G. Auer, and L. Van Der Perre, "Challenges and enabling technologies for energy aware mobile radio networks," IEEE Communications Magazine, Vol. 48, No. 11, 66-72, Nov. 2010.
doi:10.1109/MCOM.2010.5621969

36. Blumenstein, J., R. Marsalek, Z. Fedra, A. Prokes, and C. Mecklenbrauker, "Channel estimation method for OFDM in low SNR based on two-dimensional spreading," Wireless Personal Communications, Vol. 78, No. 1, 715-728, 2014.
doi:10.1007/s11277-014-1779-y

37. Shiu, D. S., G. J. Foschini, M. J. Gans, and J. M. Kahn, "Fading correlation and its effect on the capacity of multielement antenna systems," IEEE Transactions on Communications, Vol. 48, No. 3, 502-513, 2000.
doi:10.1109/26.837052