Vol. 73
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-07-19
Research on Spatial Characteristics of Wireless Channel in the Mine Tunnel
By
Progress In Electromagnetics Research M, Vol. 73, 131-139, 2018
Abstract
Mining and mineral exploration are very important in the global economy. In mining operations, communication systems play vital roles in ensuring personal safety, enhancing operational efficiency and process optimization. Multiple Input Multiple Output (MIMO) systems have been widely used in the mine environment to suppress the multi-path problem of the tunnel and enhance the capacity of the channel. In order to realize the optimal performance of MIMO system, spatial characteristics of wireless signal in an underground tunnel must be considered. In this paper, the wave propagation model combined with the modal theory and ray theory is used to simulate mine underground wireless channel. Meanwhile, the theoretical models of the signal Angular Power Spectrum (APS) and Angular Spread (AS) are constructed. After simulation and comparison, the following conclusions can be drawn: the APS distribution of the wireless signal is similar to the Gaussian distribution; the position of the antenna in the cross section of the mine tunnel has a small influence on the signal AS, which can be neglected; the roughness of the mine tunnel wall can change the characteristic of the signal AS to some extent.
Citation
Min Gao, Yu Huo, and Yaqiang Zheng, "Research on Spatial Characteristics of Wireless Channel in the Mine Tunnel," Progress In Electromagnetics Research M, Vol. 73, 131-139, 2018.
doi:10.2528/PIERM18070201
References

1. Arghavan, E. F., S. Bashir, D. G. Michelson, and S. Noghanian, "A survey of wireless communications and propagation modeling in underground mines," IEEE Communications Surveys & Tutorials, Vol. 15, No. 4, 1524-1545, Dec. 2013.
doi:10.1109/SURV.2013.031413.00130

2. Sun, Z., I. F. Akyildiz, and G. P. Hancke, "Capacity and outage analysis of MIMO and cooperative communication systems in underground tunnels," IEEE Trans. Wireless Communications, Vol. 10, No. 11, 3793-3803, Nov. 2011.
doi:10.1109/TWC.2011.080611.102077

3. Sun, Z. and I. F. Akyildiz, "Channel modeling and analysis for wireless networks in underground mines and road tunnels," IEEE Trans. Communications, Vol. 58, No. 6, 1758-1768, Jun. 2010.
doi:10.1109/TCOMM.2010.06.080353

4. Ranjan, A., P. Misra, and H. B. Sahu, "Experimental measurements and channel modeling for wireless communication networks in underground mine environments," 2017 11th European Conference on Antennas and Propagation (EUCAP), 1345-1349, 2017.
doi:10.23919/EuCAP.2017.7928854

5. Yin, S. X., D. W. Chen, and Q. Zhang, "Mining spectrum usage data: A large-scale spectrum measurement study," IEEE Trans. Mobile Computing, Vol. 11, No. 6, 1033-1046, Jun. 2016.

6. Garcia-Pardo, C., J.-M. Molina-Garcia-Pardo, M. Lienard, D. P. Gaillot, and P. Degauque, "Double directional channel measurements in an arched tunnel and interpretation using ray tracing in a rectangular tunnel," Progress In Electromagnetics Research M, Vol. 22, 91-107, 2012.
doi:10.2528/PIERM11070110

7. Forooshani, A. E., S. Noghanian, and D. G. Michelson, "Characterization of angular spread in underground tunnels based on the multimode waveguide mode," IEEE Trans. Communications, Vol. 62, No. 11, 4126-4133, 2014.
doi:10.1109/TCOMM.2014.2363126

8. Zhang, Y. P. and Y. Hwang, "Characterization of UHF radio propagation channels in tunnel environments for microcellular and personal communications," IEEE Trans. Veh. Technol., Vol. 47, No. 1, 283-296, 1998.
doi:10.1109/25.661054

9. Lienard, M. and P. Degauque, "Natural wave propagation in mine environments," IEEE Antennas Wireless Propag. Lett., Vol. 48, 1326-1339, 2000.
doi:10.1109/8.898765

10. Sun, J. P. and M. F. Gao, "Research on the radiation characteristics of symmetrical dipole antenna in rectangular tunnel," Journal of China Coal Society, Vol. 35, 2121-2124, 2010.

11. Huo, Y., F. X. Liu, and Z. Xu, "Effect of antenna location on radiation eld distribution in coal mine tunnels," International Journal of Coal Science & Technology, Vol. 38, 715-720, 2013.

12. Huo, Y., H. D. Zheng, Y. J. Hu, and G. P. Zhang, "Optimum beam index of mine antenna used in rectangular tunnels," International Journal of Coal Science & Technology, Vol. 42, 2776-2782, 2017.

13. Huo, Y., Z. Xu, and F. X. Liu, "A wave propagation model combined the modal theory and ray theory in coal mine tunnels," Chinese Journal of Electronics, Vol. 41, 110-116, 2013.

14. Laakman, K. and W. Steier, "Waveguides: Characteristics modes of hollow rectangular dielectric waveguides," Appl. Opt., Vol. 15, No. 5, May 1976.

15. Mahmoud, S. F. and J. R. Wait, "Geometrical optical approach for electromagnetic wave propagation in rectangular mine tunnels," Radio Science,, Vol. 9, 1147-1158, 1974.
doi:10.1029/RS009i012p01147

16. Dudley, D. G., M. Lienard, S. F. Mahmoud, and P. Degauque, "Wireless propagation in tunnels," IEEE Antennas Propag. Mag., Vol. 49, No. 2, 11-26, Apr. 2007.
doi:10.1109/MAP.2007.376637

17. Lee, W. C. Y., "Effects on correlation between two mobile radio base-station antennas," IEEE Trans. Veh. Technol., Vol. 22, No. 4, 1214-1224, Nov. 1973.

18. Adachi, F., M. T. Feeney, A. G. Williamson, and J. D. Parsons, "Crosscorrelation between the envelopes of 900MHz signals received at a mobile radio base station site," IEE Proc. F, Vol. 133, No. 6, 506-512, 1986.

19. Pedersen, K. I., P. E. Mogensen, and B. H. Fleury, "Power azimuth spectrum in outdoor environments," Electron. Lett., Vol. 33, No. 18, 1583-1584, 1997.
doi:10.1049/el:19971029

20. Huo, Y., Z. Xu, and H. D. Zheng, "Characteristics of multimode propagation in rectangular tunnels," Chinese Journal of Radio Science, Vol. 25, 1225-1230, 2010.

21. Emslie, G. A., L. L. Robert, and P. F. Strong, "Theory of the propagation of UHF radio waves in coal mine tunnels," IEEE Transactions on Antennas and Propagation, Vol. 23, 192-205, 1975.
doi:10.1109/TAP.1975.1141041