1. Li, X., I. R. Ciric, and M. R. Raghuveer, "Investigation of ionized fields due to bundled unipolar DC transmission lines in the presence of wind," IEEE Transactions on Power Delivery, Vol. 14, No. 1, 211-217, Jan. 1999.
doi:10.1109/61.736719 Google Scholar
2. Zhang, B., J. He, R. Zeng, S. Gu, and L. Cao, "Calculation of ion flow field under HVDC bipolar transmission lines by integral equation method," IEEE Transactions on Magnetics, Vol. 43, No. 4, 1237-1240, Apr. 2007.
doi:10.1109/TMAG.2007.892305 Google Scholar
3. Li, W., B. Zhang, J. He, R. Zeng, and S. Chen, "Research on calculation method of ion flow field under multi-circuit HVDC transmission lines," Proc. 20th Int. Zurich Symp. Electromagn. Compat., 133-136, 2009. Google Scholar
4. He, W., Z. H. Liu, R. K. Gordon, W. E. Hutchcraft, F. Yang, and A. Chang, "A comparison of the element free Galerkin method and the meshless local Petrov-Galerkin method for solving electromagnetic problems," Applied Computational Electromagnetics Society Journal, Vol. 27, No. 8, 620-629, Aug. 2012. Google Scholar
5. Janischewskyj, W. and G. Gela, "Finite element solution for electric fields of coronating DC transmission lines," IEEE Transactions on Power Apparatus and Systems, Vol. 98, No. 3, 1000-1012, 1979.
doi:10.1109/TPAS.1979.319258 Google Scholar
6. Takuma, T., T. Ikeda, and T. Kawamoto, "Calculation of ion flow fields of HVDC transmission lines by the finite element method," IEEE Transactions on Power Apparatus and Systems, Vol. 100, No. 12, 4802-4810, 1981.
doi:10.1109/TPAS.1981.316432 Google Scholar
7. Liu, Z., W. He, F. Yang, et al. "A simple and efficient local Petrov-Galerkin meshless method and its application," International Journal of Applied Electromagnetics and Mechanics, Vol. 44, No. 1, 115-123, 2014.
doi:10.3233/JAE-131740 Google Scholar
8. He, W., Z. Liu, W. E. Hutchcraft, et al. "Complex problem domain based local Petrov-Galerkin meshless method for electromagnetic problems," International Journal of Applied Electromagnetics and Mechanics, Vol. 42, No. 1, 73-83, 2013.
doi:10.3233/JAE-121646 Google Scholar
9. F Viana, S. A., D. Rodger, and H. C. Lai, "Meshless local Petrov-Galerkin method with radial basis functions applied to electromagnetics," IEE Proceedings - Science, Measurement and Technology, Vol. 151, No. 6, 449-451, 2004.
doi:10.1049/ip-smt:20040860 Google Scholar
10. Yang, F., Z. Liu, H. Luo, X. Liu, and W. He, "Calculation of ionized field of HVDC transmission lines by the Meshless method," IEEE Transactions on Magnetics, Vol. 50, No. 7, Art. No. 7200406, Jul. 2014. Google Scholar
11. Lu, T. B., H. Feng, X. A. Cui, Z. B. Zhao, and L. Li, "Analysis of the ionized field under HVDC transmission lines in the presence of wind based on upstream finite element method," IEEE Transactions on Magnetics, Vol. 46, No. 8, 2939-2942, Aug. 2010.
doi:10.1109/TMAG.2010.2044149 Google Scholar
12. Yu, M. and E. Kuffel, "A new algorithm for evaluating the fields associated with HVDC power transmission lines in the presence of Corona and strong wind," IEEE Transactions on Magnetics, Vol. 29, No. 2, 1985-1988, Mar. 1993.
doi:10.1109/20.250798 Google Scholar
13. Liu, Z., M. Lu, Q. Lia, et al. "Direct coupling method of meshless local Petrov-Galerkin (MLPG) and finite element method (FEM)," International Journal of Applied Electromagnetics and Mechanics, Vol. 51, No. 1, 51-59, 2016.
doi:10.3233/JAE-150161 Google Scholar
14. Hara, M., N. Hayashi, K. Shiotsuki, and M. Akazaki, "Influence of wind and conductor potential on distributions of electric field and ion current density at ground level in DC high voltage line to plane geometry," IEEE Transactions on Power Apparatus and Systems, Vol. 101, No. 4, 803-814, 1982.
doi:10.1109/TPAS.1982.317145 Google Scholar
15. Huang, G. D., J. J. Ruan, Z. Y. Du, and C. W. Zhao, "Highly stable upwind FEM for solving ionized field of HVDC transmission line," IEEE Transactions on Magnetics, Vol. 48, No. 2, 719-722, Feb. 2012.
doi:10.1109/TMAG.2011.2174203 Google Scholar
16. White, H. J., "Particle changing in electrostatic precipitation," AIEE Transactions, Vol. 70, 1186-1191, 1951. Google Scholar
17. Kim, K. B. and B. J. Yoon, "Field charging of spherical particles in linear electric field," Journal of Colloid & Interface Science, Vol. 186, No. 1, 209-211, 1997.
doi:10.1006/jcis.1996.4628 Google Scholar
18. Liu, H. L., "Research on measurement method of the concentration and size distribution of indoor suspended particulate matters,", Huazhong University of Science and Technology, 2009. Google Scholar
19. Zhao, Y. S. and W. L. Zhang, "Effects of fog on ion flow field under HVDC transmission lines," Proceedings of the CSEE, Vol. 33, No. 13, 194-199, May 2013. Google Scholar
20. Tan, Z. N., J. H. Yang, M. M. Xu, et al. "Influence of Fog-Haze on corona ion flow field of HVDC transmission lines," High Voltage Engineering, Vol. 42, No. 12, 3844-3852, Dec. 2016. Google Scholar