1. Costantine, J., Y. Tawk, S. E. Barbin, and C. G. Christodoulou, "Reconfigurable antennas: Design and applications," Proceedings of the IEEE, Vol. 103, 424-437, 2015.
doi:10.1109/JPROC.2015.2396000 Google Scholar
2. Christodoulou, C. G., Y. Tawk, S. A. Lane, and S. R. Erwin, "Reconfigurable antennas for wireless and space applications," Proceedings of the IEEE, Vol. 100, 2250-2261, 2012.
doi:10.1109/JPROC.2012.2188249 Google Scholar
3. Yang, S., C. Zhang, H. K. Pan, A. E. Fathy, and V. K. Nair, "Frequency-reconfigurable antennas for multiradio wireless platforms," IEEE Microwave Magazine, Vol. 10, 66-83, 2009.
doi:10.1109/MMM.2008.930677 Google Scholar
4. Bhattacharjee, T., H. Jiang, and N. Behdad, "A fluidically tunable, dual-band patch antenna with closely spaced bands of operation," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 118-121, 2016.
doi:10.1109/LAWP.2015.2432575 Google Scholar
5. Murray, C. and R. R. Franklin, "Independently tunable annular slot antenna resonant frequencies using fluids," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1449-1452, 2014.
doi:10.1109/LAWP.2014.2341232 Google Scholar
6. Huff, G. H., D. L. Rolando, P. Walters, and J. McDonald, "A frequency reconfigurable dielectric resonator antenna using colloidal dispersions," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 288-290, 2010.
doi:10.1109/LAWP.2010.2046613 Google Scholar
7. Dey, A. and G. Mumcu, "Microfluidically controlled frequency-tunable monopole antenna for high-power applications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 226-229, 2016.
doi:10.1109/LAWP.2015.2438863 Google Scholar
8. Kim, D., R. G. Pierce, R. Henderson, S. J. Doo, K. Yoo, and J.-B. Lee, "Liquid metal actuation-based reversible frequency tunable monopole antenna," Applied Physics Letters, Vol. 105, 234104, 2014.
doi:10.1063/1.4903882 Google Scholar
9. Wang, M., C. Trlica, M. R. Khan, M. D. Dickey, and J. J. Adams, "A reconfigurable liquid metal antenna driven by electrochemically controlled capillarity," Journal of Applied Physics, Vol. 117, 194901, 2015.
doi:10.1063/1.4919605 Google Scholar
10. Morales, D., Morales, N. A. Stoute, Z. Yu, D. E. Aspnes, and M. D. Dickey, "Liquid gallium and the eutectic gallium indium (EGaIn) alloy: Dielectric functions from 1.24 to 3.1 eV by electrochemical reduction of surface oxides," Applied Physics Letters, Vol. 109, 091905, 2016.
doi:10.1063/1.4961910 Google Scholar
11. Khan, M. R., G. J. Hayes, J.-H. So, G. Lazzi, and M. D. Dickey, "A frequency shifting liquid metal antenna with pressure responsiveness," Applied Physics Letters, Vol. 99, 013501, 2011.
doi:10.1063/1.3603961 Google Scholar
12. King, A. J., J. F. Patrick, N. R. Sottos, S. R. White, G. H. Huff, and J. T. Bernhard, "Microfluidically switched frequency-reconfigurable slot antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 828-831, 2013.
doi:10.1109/LAWP.2013.2270940 Google Scholar
13. Morishita, A. M., C. K. Y. Kitamura, A. T. Ohta, and W. A. Shiroma, "A liquid-metal monopole array with tunable frequency, gain, and beam steering," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1388-1391, 2013.
doi:10.1109/LAWP.2013.2286544 Google Scholar
14. Rodrigo, D., L. Jofre, and B. A. Cetiner, "Circular beam-steering reconfigurable antenna with liquid metal parasitics," IEEE Transactions on Antennas and Propagation, Vol. 60, 1796-1802, 2012.
doi:10.1109/TAP.2012.2186235 Google Scholar
15. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd edition (With CD), Wiley India Pvt. Limited, 2009.
16. Garg, R., Microstrip Antenna Design Handbook, Artech House, 2001.
17. Devi, M. and D. Mohanta, "Rheological properties of iron oxide based ferrofluids," AIP Conference Proceedings, Vol. 1147, 495-501, 2009.
doi:10.1063/1.3183480 Google Scholar
18. Furumura, K. and S. Matsunaga, "Process for producing a ferrofluid, and a composition thereof,", ed: Google Patents, 1984. Google Scholar