1. Balanis, C. A., "Antenna theory: A review," Proceedings of the IEEE, Vol. 80, No. 1, 7-23, 1992.
doi:10.1109/5.119564 Google Scholar
2. Kumar, G. and K. P. Ray, Broadband Microstrip Antennas, Artech House, 2003.
3. Sharma, P. C. and K. C. Gupta, "Analysis and optimized design of single feed circularly polarized microstrip antennas," IEEE Trans. Antennas Propag., Vol. 31, No. 6, 949-955, 1983.
doi:10.1109/TAP.1983.1143162 Google Scholar
4. Malviya, L., R. K. Panigrahi, and M. V. Kartikeyan, "Circularly polarized 2 × 2 MIMO antenna for WLAN applications," Progress In Electromagnetics Research C, Vol. 66, 97-107, 2016.
doi:10.2528/PIERC16051905 Google Scholar
5. Sharma, W. C., H. Kumar, and G. Kumar, "Single feed dual band circularly polarized stub loaded tunable microstrip patch antenna," 2016 IEEE Asia-Pacific Microwave Conference (APMC), 1-4, 2016. Google Scholar
6. Qing, X. and Z. N. Chen, "Compact asymmetric-slit microstrip antennas for circular polarization," IEEE Trans. Antennas Propag., Vol. 59, No. 1, 285-288, 2011.
doi:10.1109/TAP.2010.2090468 Google Scholar
7. Ouedraogo, R. O., E. J. Rothwell, A. R. Diaz, K. Fuchi, and A. Temme, "Miniaturization of patch antennas using a metamaterial-inspired technique," IEEE Trans. Antennas Propag., Vol. 60, No. 5, 2175-2182, 2012.
doi:10.1109/TAP.2012.2189699 Google Scholar
8. Alizadeh, F., C. Ghobadi, J. Nourinia, and R. Zayer, "Bandwidth enhancement of patch antennas loaded with complementary split-ring resonators," 2014 IEEE 7th International Symposium on Telecommunications (IST), 224-229, 2014.
doi:10.1109/ISTEL.2014.7000702 Google Scholar
9. Ramachandran, A., S. V. Pushpakaran, M. Pezholil, and V. Kesavath, "A four port MIMO antenna using concentric square ring patches loaded with CSRR for high isolation," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1196-1199, 2016.
doi:10.1109/LAWP.2015.2499322 Google Scholar
10. Rajeshkumar, V. and S. Raghavan, "A compact CSRR loaded dual band microstrip patch antenna for wireless applications," 2013 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), 1-4, 2013. Google Scholar
11. Jha, N., R. Pandeeswari, and S. Raghavan, "A performance improved compact size microstrip antenna loaded with CSRR for GSM, WLAN/WiMAX and WAVE applications," IEEE International Conference on Emerging Trends in Engineering, Technology and Science (ICETETS), 1-6, 2016. Google Scholar
12. Jie, C., L. Z. Gang, F. Lu, and Z. Shou-Zheng, "A multi-system and dual-band miniaturization microstrip antenna loaded with CSRR for CNSS applications," 2014 IEEE 3rd Asia-Pacific Conference on Antennas and Propagation (APCAP), 450-453, 2014.
doi:10.1109/APCAP.2014.6992523 Google Scholar
13. Dong, Y., H. Toyao, and T. Itoh, "Design and characterization of miniaturized patch antennas loaded with complementary split-ring resonators," IEEE Trans. Antennas Propag., Vol. 60, No. 2, 772-778, 2012.
doi:10.1109/TAP.2011.2173120 Google Scholar
14. Liu, X. Y., Z. T. Wu, Y. Fan, and E. M. Tentzeris, "A miniaturized CSRR loaded wide-beamwidth circularly polarized implantable antenna for subcutaneous real-time glucose monitoring," IEEE Antennas Wireless Propag. Lett., Vol. 16, 577-580, 2017.
doi:10.1109/LAWP.2016.2590477 Google Scholar
15. Simruni, M. and S. Jam, "A circularly-polarized compact wideband patch antenna loaded by metamaterial structures," Progress In Electromagnetics Research C, Vol. 78, 93-104, 2017.
doi:10.2528/PIERC17070702 Google Scholar
16. "CST Microwave Studio Manual,", ver. 14, Computer Simulation Technology, Framingham, MA. Google Scholar
17. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, Wiley-Interscince, 2006.
18. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, November 1999.
doi:10.1109/22.798002 Google Scholar
19. Smith, D. R., Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, No. 18, 4184-4187, May 2000.
doi:10.1103/PhysRevLett.84.4184 Google Scholar
20. Baena, J. D., J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 4, 1451-1461, 2005.
doi:10.1109/TMTT.2005.845211 Google Scholar
21. Ortiz, N., F. Falcone, and M. Sorolla, "Enhanced gain dual band patch antenna based on complementary rectangular split-ring resonators," Microw. Opt. Technol. Lett., Vol. 53, No. 3, 590-594, 2011.
doi:10.1002/mop.25797 Google Scholar
22. Limaye, A. U. and J. Venkataraman, "Size reduction in microstrip antennas using left-handed materials realized by complementary split-ring resonators in ground plane," 2007 IEEE International Symposium in Antennas and Propagation Society, 1869-1872, 2007.
doi:10.1109/APS.2007.4395883 Google Scholar
23. Ma, J. J., X. Y. Cao, and T. Liu, "Design the size reduction patch antenna based on complementary split ring resonators," 2010 International Conference in Microwave and Millimeter Wave Technology (ICMMT), 401-402, 2010.
doi:10.1109/ICMMT.2010.5524983 Google Scholar
24. Pandeeswari, R. and S. Raghavan, "Microstrip antenna with complementary split ring resonator loaded ground plane for gain enhancement," Microw. Opt. Technol. Lett., Vol. 57, No. 2, 292-296, 2015.
doi:10.1002/mop.28835 Google Scholar
25. Xie, Y. H., C. Zhu, L. Li, and C. H. Liang, "A novel dual-band metamaterial antenna based on complementary split ring resonators," Microw. Opt. Technol. Lett., Vol. 54, No. 4, 1007-1009, 2012.
doi:10.1002/mop.26715 Google Scholar
26. Lee, Y. and Y. Hao, "Characterization of microstrip patch antennas on metamaterial substrates loaded with complementary split-ring resonators," Microw. Opt. Technol. Lett., Vol. 50, No. 8, 2131-2135, 2008.
doi:10.1002/mop.23596 Google Scholar
27. Rajkumar, R. and U. K. Kommuri, "A triangular complementary split ring resonator based compact metamaterial antenna for multiband operation," Wireless Personal Communications, Vol. 101, No. 2, 1075-1089, 2018.
doi:10.1007/s11277-018-5749-7 Google Scholar
28. Daniel, R. S., R. Pandeeswari, and S. Raghavan, "A miniaturized printed monopole antenna loaded with hexagonal complementary split ring resonators for multiband operations," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 28, No. 7, e21401, 2018.
doi:10.1002/mmce.21401 Google Scholar
29. Boopathi, R. R. and S. K. Pandey, "A CPW-fed circular patch antenna inspired by reduced ground plane and CSRR slot for UWB applications with notch band," Microw. Opt. Technol. Lett., Vol. 59, No. 4, 745-749, 2017.
doi:10.1002/mop.30386 Google Scholar
30. Xiao, B., X. Wang, and J. Zhao, "A dual band notched ultra-wideband antenna using complementary split ring resonators," 2010 IEEE International Conference in Wireless Communications, Networking and Information Security (WCNIS), 107-109, 2010. Google Scholar