1. Holmes, J. J., "Past, present, and future of underwater sensor arrays to measure the electromagnetic field signatures of naval vessels," Marine Technology Society Journal, Vol. 49, No. 6, 123-133, 2015.
doi:10.4031/MTSJ.49.6.1 Google Scholar
2. Doose, J., "Numerical analysis of propeller-induced low-frequency modulations in underwater electric potential signatures of naval vessels in the context of corrosion protection systems," Comsol Conference, 1-8, 2009. Google Scholar
3. Song, L. I., M. Shi, J. D. Luan, et al. "The feature extraction and detection for shaft-rate electric field of a ship," Acta Armamentarii, 2015. Google Scholar
4. Holmes, J. J., "Application of models in the design of underwater electromagnetic signature reduction systems," Naval Engineers Journal, Vol. 119, No. 4, 19-29, 2007.
doi:10.1111/j.1559-3584.2007.00083.x Google Scholar
5. Kumar, P. A., B. C. Mouli, and S. Ganesh, "Extraction of target parameters using underwater electric field analysis," IEEE International Conference on Communication and Electronics Systems, 1-5, 2017. Google Scholar
6. Lu, J. J., R. Y. Yue, and F. Yu, "Monitoring and analysis of the marine underwater electric field of the typical shallow sea area," International Conference on environment and Engineering Geophysics, 2012. Google Scholar
7. Li, K., "Electromagnetic fields in stratified media," Advanced Topics in Science & Technology in China, Vol. 378, No. 2, 409-415, 2009. Google Scholar
8. Sampaio, E. E. S., "Primary electromagnetic field in the sea induced by a moving line of electric dipoles," Wave Motion, Vol. 43, No. 2, 123-131, 2005.
doi:10.1016/j.wavemoti.2005.08.001 Google Scholar
9. Schaefer, D., J. Doose, and M. Pichlmaier, "Conversion of UEP signatures between different environmental conditions using shaft currents," IEEE Journal of Oceanic Engineering, Vol. 41, No. 1, 105-111, 2016.
doi:10.1109/JOE.2015.2401991 Google Scholar
10. Schaefer, D., J. Doose, and M. Pichlmaier, "Comparability of UEP signatures measured under varying environmental conditions," International Marine Electromagnetics Conference, 2013. Google Scholar
11. Kim, Y. S., S. K. Lee, and H. J. Chung, "Influence of a simulated deep sea condition on the cathodic protection and electric field of an underwater vehicle," Ocean Engineering, Vol. 148, 223-233, 2018.
doi:10.1016/j.oceaneng.2017.11.027 Google Scholar
12. Santos, W. J., J. A. F. Santiago, and J. C. F. Telles, "Optimal positioning of anodes and virtual sources in the design of cathodic protection systems using the method of fundamental solutions," Engineering Analysis with Boundary Elements, Vol. 46, 67-74, 2014.
doi:10.1016/j.enganabound.2014.05.009 Google Scholar
13. Abootalebi, O., A. Kermanpur, and M. R. Shishesaz, "Optimizing the electrode position in sacrificial anode cathodic protection systems using boundary element method," Corrosion Science, Vol. 52, 678-687, 2010.
doi:10.1016/j.corsci.2009.10.025 Google Scholar
14. Santos, W. J., J. A. F. Santiago, and J. C. F. Telles, "Using the Gaussian function to simulate constant potential anodes in multiobjective optimization of cathodic protection systems," Engineering Analysis with Boundary Elements, Vol. 73, 35-41, 2016.
doi:10.1016/j.enganabound.2016.08.014 Google Scholar
15. Xing, S. H., Y. Li, and H. Q. Song, "Optimization the quantity, locations and output currents of anodes to improve cathodic protection effect of semi-submersible crane vessel," Ocean Engineering, Vol. 113, 144-150, 2016.
doi:10.1016/j.oceaneng.2015.12.047 Google Scholar
16. Kim, Y. S., J. Kim, D. Choi, et al. "Optimizing the sacrificial anode cathodic protection of the rail canal structure in seawater using the boundary element method," Engineering Analysis with Boundary Elements, Vol. 77, 36-48, 2017.
doi:10.1016/j.enganabound.2017.01.003 Google Scholar
17. Lan, Z., X. Wang, and B. Hou, "Simulation of sacrificial anode protection for steel platform using boundary element method," Engineering Analysis with Boundary Elements, Vol. 36, No. 5, 903-906, 2012.
doi:10.1016/j.enganabound.2011.07.018 Google Scholar
18. Wu, J. H., S. H. Xing, and C. H. Liang, "The influence of electrode position and output current on the corrosion related electro-magnetic field of ship," Advances in Engineering Software, Vol. 42, No. 10, 902-909, 2011.
doi:10.1016/j.advengsoft.2011.06.007 Google Scholar
19. Kim, Y. S., S. K. Lee, and J. G. Kim, "Influence of anode location and quantity for the reduction of underwater electric fields under cathodic protection," Ocean Engineering, Vol. 163, 476-482, 2018.
doi:10.1016/j.oceaneng.2018.06.024 Google Scholar
20. Hack, H. P., "Atlas of polarization diagrams for naval materials in seawater,", 1995. Google Scholar
21. Yue, R., P. Hu, and J. Zhang, "The influence of the seawater and seabed interface on the underwater low frequency electromagnetic field signatures," IEEE Ocean Acoustics, 1-7, 2016. Google Scholar