Vol. 81
Latest Volume
All Volumes
PIERL 129 [2026] PIERL 128 [2025] PIERL 127 [2025] PIERL 126 [2025] PIERL 125 [2025] PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-01-09
Switching-Mode CMOS Power Amplifier Using a Differentially Coupled Series Inductor
By
Progress In Electromagnetics Research Letters, Vol. 81, 59-64, 2019
Abstract
In this work, we propose a compact CMOS power amplifier using a differentially coupled series inductor for motion detection radar applications. The proposed switching-mode power amplifier is designed with a cascode and differential structure. To realize a compact size matching network, a differentially coupled series inductor is used in the input matching network. In the proposed power amplifier, two typical spiral series inductors for the input matching network are replaced with a single differentially coupled series inductor. As a result, the used chip area of the differentially coupled series inductor is smaller than half that of a typical inductor for the given inductances of each inductor. Additionally, to obtain a high gain characteristic, we adapt modified mode-locking techniques for the power stage of the power amplifier. To verify the feasibility of the power amplifier, we design a 9.5-GHz power amplifier with a 130-nm RFCMOS process. We obtain saturation power of 15 dBm while the power-added efficiency is approximately 28%.
Citation
Changhyun Lee, and Changkun Park, "Switching-Mode CMOS Power Amplifier Using a Differentially Coupled Series Inductor," Progress In Electromagnetics Research Letters, Vol. 81, 59-64, 2019.
doi:10.2528/PIERL18102506
References

1. Park, J., C. Lee, and C. Park, "X-band CMOS power amplifier with high efficiency for motion detection radar," Microw. Opt. Technol., Vol. 56, 2552-2557, 2014.
doi:10.1002/mop.28638        Google Scholar

2. Yang, J.-R., S. Hong, and D.-W. Kim, "A distance-compensated radar sensor with a sixport network for remote distinction of objects with different dielectric constants," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 11/12, 1429-1437, 2010.
doi:10.1163/156939310792149632        Google Scholar

3. Chang, C. H., S. Wang, H. S. Wu, E.-C. Liang, A.-S. Liu, K.-H. Tsai, M.-J. Chiang, P.-J. Yang, Y.- J.Wu, H. Lee, and C.-K. C. Tzuang, "Design of X-band complementary metal-oxide semiconductorbased frequency-modulation continuous-wave sensor," IET Circ. Devices Syst., Vol. 3, 331-339, 2009.
doi:10.1049/iet-cds.2008.0310        Google Scholar

4. Haridas, K., T. H. Teo, and X. Yuan, "A 2.4-GHz CMOS power amplifier design for low power wireless sensors network," IEEE International Symposium on Radio-Frequency Integration Technology, 299-302, 2009.
doi:10.1109/RFIT.2009.5383675        Google Scholar

5. Lee, J., D.-H. Lee, and S. Hong, "A doherty power amplifier with a GaN MMIC for femtocell base stations," IEEE Microw. Wireless Compon. Lett., Vol. 24, 194-196, 2014.
doi:10.1109/LMWC.2013.2292926        Google Scholar

6. Wilk, S. J., W. Lepkowski, and T. J. Thornton, "32 dBm power amplifier on 45 nm SOI CMOS," IEEE Microw. Wireless Compon. Lett., Vol. 23, 161-163, 2013.
doi:10.1109/LMWC.2013.2245413        Google Scholar

7. Chen, J.-H., S. R. Helmi, A. Y.-S. Jou, and S. Mohammadi, "A wideband power amplifier in 45 nm CMOS SOI technology for X band applications," IEEE Microw. Wireless Compon. Lett., Vol. 23, 587-589, 2013.
doi:10.1109/LMWC.2013.2279117        Google Scholar

8. Lee, G., J. Jung, J. Jang, and J. Song, "A multiband power amplifier using a switch-based reconfigurable matching network for optimized power performance," Microw. Opt. Technol., Vol. 56, 2881-2884, 2014.
doi:10.1002/mop.28730        Google Scholar

9. Mohadeskasaei, S. A., F. Lin, X. Zhou, and S. U. Abdullahi, "Novel design theory for high-efficiency and high-linearity microwave power amplifier based on 2nd harmonic: Enhanced class-J," Progress In Electromagnetics Research M, Vol. 57, 103-111, 2017.
doi:10.2528/PIERM17033104        Google Scholar

10. Tai, H.-Q., W. Hong, B. Zhang, and X.-M. Yu, "A compact 60W X-band GaN HEMT power amplifier MMIC," IEEE Microw. Wireless Compon. Lett., Vol. 27, 73-75, 2017.
doi:10.1109/LMWC.2016.2630926        Google Scholar

11. Lee, H., W. Lim, W. Lee, H. Kang, J. Bae, C.-S. Park, K. C. Hwang, K.-Y. Lee, and Y. Yang, "Compact load network for GaN-HEMT doherty power amplifier IC using left-handed and righthanded transmission lines," IEEE Microw. Wireless Compon. Lett., Vol. 27, 293-295, 2017.
doi:10.1109/LMWC.2017.2661706        Google Scholar

12. Zhang, Y. and K. Ma, "A 2–22 GHz CMOS distributed power amplifier with combined artificial transmission lines," IEEE Microw. Wireless Compon. Lett., Vol. 27, 1122-1124, 2017.
doi:10.1109/LMWC.2017.2750416        Google Scholar

13. Liu, B., M. Mao, D. Khanna, P. Choi, C. C. Boon, and E. A. Fitzgerald, "A highly efficient fully integrated GaN power amplifier for 5-GHz WLAN 802.11ac application," IEEE Microw. Wireless Compon. Lett., Vol. 28, 437-439, 2018.
doi:10.1109/LMWC.2018.2812107        Google Scholar

14. Lee, C., S. Yoon, and C. Park, "A differentially coupled series inductor for differential RFICs," Microw. Opt. Technol., Vol. 57, 2223-2225, 2015.
doi:10.1002/mop.29293        Google Scholar

15. Lee, C. and C. Park, "A 2.4-GHz CMOS power amplifier using a gain and stability enhancement technique for IEEE 802.11n WLAN applications," Microw. Opt. Technol., Vol. 58, 2265-2268, 2016.
doi:10.1002/mop.30022        Google Scholar

16. Ku, B.-H., S.-H. Baek, and S. Hong, "A X-band CMOS power amplifier with on-chip transmission line transformers," Radio Frequency Integrated Circuits (RFIC) Symp. Dig., 523-526, April 2008.        Google Scholar

17. Lu, C., A.-V. H. Pham, M. Shaw, and C. Saint, "Linearization of CMOS broadband power amplifiers through combined multigated transistors and capacitance compensation," IEEE Trans. Microw. Theory Tech., Vol. 55, 2320-2328, 2007.        Google Scholar

18. Kim, H. S., K. Y. Kim, W. Y. Kim, Y. S. Noh, I. B. Yom, I. Y. Oh, and C. S. Park, "SiGe MMIC power amplifier with on-chip lineariser for X-band applications," Electron. Lett., Vol. 45, 1036-1037, 2009.
doi:10.1049/el.2009.1973        Google Scholar

19. Sewiolo, B., G. Fischer, and R. Weigel, "A 12-GHz high-efficiency tapered traveling-wave power amplifier with novel power matched cascode gain cells using SiGe HBT transistors," IEEE Trans. Microw. Theory Tech., 2329-2336, 2009.
doi:10.1109/TMTT.2009.2029029        Google Scholar