Vol. 77
Latest Volume
All Volumes
PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-12-29
Two-Stage Hybrid Precoding Algorithm Based on Switch Network for Millimeter Wave MIMO Systems
By
Progress In Electromagnetics Research M, Vol. 77, 103-113, 2019
Abstract
Owing to the hardware cost and power consumption limitation, hybrid precoding has been recently considered as an alternative to the fully digital precoding in millimeter wave (mmWave) largescale multiple-input multiple-output (MIMO) systems. Although the number of radio frequency (RF) chains is reduced to a certain extent in the hybrid precoding structure, a great number of phase shifters are still needed. In this paper, we present a new hybrid precoding architecture based on switch network to decrease the power consumption of hybrid precoder by reducing the number of phase shifters greatly. The new hybrid precoding architecture consists of three parts, a digital precoder, an analog precoder, and a switch network, in which the switch network is used to offer a dynamic connection from phase shifters to antennas. Afterwards, a two-stage algorithm is proposed to determine each part of the hybrid precoding implementation. Speci cally, the product of the analog precoding matrix and digital precoding matrix is viewed as a whole matrix rstly, thereby the original problem is simplified into a two-variable problem which is relatively easy to be solved. Then, the decomposition of the analog precoding matrix and digital precoding matrix is considered in the second stage. Simulation results show that the presented implementation can not only provide a better trade-off between hardware complexity and system performance, but also achieve higher energy eciency with far fewer phase shifters than previous works.
Citation
Fulai Liu, Xiaodong Kan, Xiaoyu Bai, Ruiyan Du, and Yanshuo Zhang, "Two-Stage Hybrid Precoding Algorithm Based on Switch Network for Millimeter Wave MIMO Systems," Progress In Electromagnetics Research M, Vol. 77, 103-113, 2019.
doi:10.2528/PIERM18102801
References

1. Han, S., C.-L. I, Z. Xu, and C. Rowell, "Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G," IEEE Communications Magazine, Vol. 53, No. 1, 186-194, 2015.
doi:10.1109/MCOM.2015.7010533

2. Kutty, S. and D. Sen, "Beamforming for millimeter wave communications: An inclusive survey," IEEE Communications Surveys & Tutorials, Vol. 18, No. 2, 949-973, 2016.
doi:10.1109/COMST.2015.2504600

3. Bai, X., F. Liu, and R. Du, "An alternating iterative hybrid beamforming method for millimeter wave large-scale antenna arrays," 2017 Progress In Electromagnetics Research Symposium - Fall (PIERS - FALL), 2769-2776, Singapore, Nov. 19–22, 2017.

4. Heath, R. W., N. González-Prelcic, Jr., S. Rangan, W. Roh, and A. M. Sayeed, "An overview of signal processing techniques for millimeter wave MIMO systems," IEEE Journal of Selected Topics in Signal Processing, Vol. 10, No. 3, 436-452, 2016.
doi:10.1109/JSTSP.2016.2523924

5. Rajashekar, R. and L. Hanzo, "Iterative matrix decomposition aided block diagonalization for mmwave multiuser MIMO systems," IEEE Transactions on Wireless Communications, Vol. 16, No. 3, 1372-1384, 2017.
doi:10.1109/TWC.2016.2628357

6. Liu, F., R. Du, X. Kan, and X. Wang, "W-LS-IR algorithm for hybrid precoding in wideband millimeter wave MIMO systems," Progress in Electromagnetics Research M, Vol. 72, 187-195, 2018.
doi:10.2528/PIERM18062803

7. Ayach, O. E., S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, "Spatially sparse precoding in millimeter wave MIMO systems," IEEE Transactions Wireless Communications, Vol. 13, No. 3, 1499-1513, 2014.
doi:10.1109/TWC.2014.011714.130846

8. Gao, X., L. Dai, S. Han, C.-L. I, and R. W. Heath, "Energy-efficient hybrid analog and digital precoding for mmwave MIMO systems with large antenna arrays," IEEE Journal on Selected Areas in Communications, Vol. 34, No. 4, 998-1009, 2016.
doi:10.1109/JSAC.2016.2549418

9. Alkhateeb, A., O. E. Ayach, G. Leus, and R. W. Heath, "Hybrid precoding for millimeter wave cellular systems with partial channel knowledge," IEEE Information Theory and Applications Workshop, 1-5, 2013.

10. Ni, W. and X. Dong, "Hybrid block diagonalization for massive multiuser MIMO systems," IEEE Transactions on Communications, Vol. 64, No. 1, 201-211, 2016.
doi:10.1109/TCOMM.2015.2502954

11. Méndez-Rial, R., C. Rusu, N. González-Prelcic, and R. W. Heath, "Dictionary-free hybrid precoders and combiners for mmwave MIMO systems," IEEE International Workshop on Signal Processing Advances in Wireless Communications, 151-155, 2016.

12. Chen, C. E., "An iterative hybrid transceiver design algorithm for millimeter wave MIMO systems," IEEE Wireless Communications Letters, Vol. 4, No. 3, 285-288, 2015.
doi:10.1109/LWC.2015.2409268

13. Sohrabi, F. and Y. Wei, "Hybrid digital and analog beamforming design for large-scale antenna arrays," IEEE Journal on Selected Topics in Signal Processing, Vol. 10, No. 3, 501-513, 2016.
doi:10.1109/JSTSP.2016.2520912

14. Sohrabi, F. and Y. Wei, "Hybrid digital and analog beamforming design for large-scale MIMO systems," IEEE International Conference on Acoustics, Speech and Signal Processing, 2929-2933, 2015.

15. Singh, J. and S. Ramakrishna, "On the feasibility of codebook-based beamforming in millimeter wave systems with multiple antenna arrays," IEEE Transactions on Wireless Communications, Vol. 14, No. 5, 2670-2683, 2015.
doi:10.1109/TWC.2015.2390637

16. Kim, C., T. Kim, and J.-Y. Seol, "Multi-beam transmission diversity with hybrid beamforming for MIMO-OFDM systems," IEEE Globecom Workshops, 61-65, 2013.

17. Yu, X., J. C. Shen, J. Zhang, and K. B. Letaief, "Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems," IEEE Journal of Selected Topics in Signal Processing, Vol. 10, No. 3, 485-500, 2016.
doi:10.1109/JSTSP.2016.2523903

18. Park, S., A. Alkhateeb, and R. W. Heath, "Dynamic subarrays for hybrid precoding in wideband mmWave MIMO systems," IEEE Transactions on Wireless Communications, Vol. 16, No. 5, 2907-2920, 2017.
doi:10.1109/TWC.2017.2671869

19. Yu, X., J. Zhang, and K. B. Letaief, "Partially-connected hybrid precoding in mm-Wave systems with dynamic phase shifter networks," IEEE International Workshop on Signal Processing Advances in Wireless Communications, 129-133, 2017.

20. Méndez-Rial, R., C. Rusu, N. González-Prelcic, and R. W. Heath, "Hybrid MIMO architectures for millimeter wave communications: Phase Shifters or Switches?," IEEE Access, Vol. 4, 247-267, 2015.

21. Alkhateeb, A., O. E. Ayach, G. Leus, and R. W. Heath, "Channel estimation and hybrid precoding for millimeter wave cellular systems," IEEE Journal of Selected Topics in Signal Processing, Vol. 8, No. 5, 831-846, 2017.
doi:10.1109/JSTSP.2014.2334278

22. Balanis, C., Antenna Theory, Wiley, 1997.

23. Yu, X., J. Zhang, and K. B. Letaief, "A hardware-efficient analog network structure for hybrid precoding in millimeter wave systems," IEEE Journal of Selected Topics in Signal Processing, Vol. 12, No. 2, 282-297, 2018.
doi:10.1109/JSTSP.2018.2814009

24. Horn, R. A. and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, U.K., 2012.
doi:10.1017/CBO9781139020411