Vol. 77
Latest Volume
All Volumes
PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-01-11
A Triple Band Polarization Insensitive Ultrathin Metamaterial Absorber for S- C- and X-Bands
By
Progress In Electromagnetics Research M, Vol. 77, 187-194, 2019
Abstract
In this paper, design of a triple band ultrathin compact polarization insensitive metamaterial absorber for S-, C- and X-band applications is proposed. The proposed absorber consists of periodic arrangement of a modified triple circular slot ring resonator as unit cell printed on the top of a continuous metal backed FR-4 dielectric substrate. The proposed absorber is ultrathin having thickness of λ0/135.66 at the lowest absorption center frequency. The measured wide stable absorption bands of 0.40 GHz, 0.45 GHz and 0.47 GHz with absorption peaks of 97%, 96.45% and 98.20% at absorption center frequencies of 2.90 GHz, 4.18 GHz and 9.25 GHz respectively are observed. The temperature profile of absorber is measured by using lock in infrared thermography, and a temperature increase of 1°C at absorbing frequency as compared to non-absorbing frequency is observed. The absorber is demonstrated to be polarization insensitive to TE and TM polarized angles of incidence of electromagnetic wave with wide angular stability up to 45°. The absorber is fabricated and tested in an anechoic chamber. Experimental results agree well with measured ones.
Citation
Amit Kumar Singh, Mahesh Pandurang Abegaonkar, and Shiban Kishen Koul, "A Triple Band Polarization Insensitive Ultrathin Metamaterial Absorber for S- C- and X-Bands," Progress In Electromagnetics Research M, Vol. 77, 187-194, 2019.
doi:10.2528/PIERM18110601
References

1. Landy, I., S. S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "A perfect metamaterial absorber," Phys. Rev. Letters, Vol. 100, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402

2. Lin, X. Q., P. Mei, P. C. Zhang, Z. Z. D. Chen, and Y. Fan, "Development of a resistor-loaded ultrawideband absorber with antenna reciprocity," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 11, 4910-4913, Nov. 2016.
doi:10.1109/TAP.2016.2598202

3. Yoo, M., H. K. Kim, and S. Lim, "Angular- and polarization-insensitive metamaterial absorber using subwavelength unit cell in multilayer technology," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 414-417, 2016.
doi:10.1109/LAWP.2015.2448720

4. Fan, Y., et al. "An active wideband and wide-angle electromagnetic absorber at microwave frequencies," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1913-1916, 2016.
doi:10.1109/LAWP.2016.2544399

5. Tak, J. and J. Choi, "A wearable metamaterial microwave absorber," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 784-787, 2017.
doi:10.1109/LAWP.2016.2604257

6. Chaurasiya, D., S. Ghosh, S. Bhattacharyya, A. Bhattacharya, and K. V. Srivastava, "Compact multi-band polarisation-insensitive metamaterial absorber," IET Microwaves, Antennas & Propagation, Vol. 10, No. 1, 94-101, Jan. 9, 2016.
doi:10.1049/iet-map.2015.0220

7. Zhai, H., C. Zhan, Z. Li, and C. Liang, "A triple-band ultrathin metamaterial absorber with wide-angle and polarization stability," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 241-244, 2015.
doi:10.1109/LAWP.2014.2361011

8. Hasan, M. M., M. R. I. Faruque, and M. T. Islam, "A tri-band microwave perfect metamaterial absorber," Microw. Opt. Technol. Lett., Vol. 59, 2302-2307, 2017.
doi:10.1002/mop.30726

9. Heydari, S., P. Jahangiri, A. Sharifi, F. B. Zarrabi, and S. Arezomand, "Fractal brokencross with Jerusalem load absorber for multiband application with polarization independence," Microw. Opt. Technol. Lett., Vol. 59, 1942-1947, 2017.
doi:10.1002/mop.30660

10. Mishra, N., D. Choudhary, R. Chowdhury, K. Kumari, and R. Chaudhary, "An investigation on compact ultra-thin triple band polarization independent metamaterial absorber for microwave frequency applications," IEEE Access, Vol. 5, No. 99, 4370-4376, 2017.
doi:10.1109/ACCESS.2017.2675439

11. Zheng, D., Y. Cheng, D. Cheng, Y. Nie, and R. Z. Gong, "Four-band polarization-insensitive metamaterial absorber based on flower-shaped structures," Progress In Electromagnetics Research, Vol. 142, 221-229, 2013.
doi:10.2528/PIER13052607

12. Dincer, F., M. Karaaslan, E. Unal, K. Delihacioglu, and C. Sabah, "Design of polarization and incident angle insensitive dual-band metamaterial absorber based on isotropic resonators," Progress In Electromagnetics Research, Vol. 144, 123-132, 2014.
doi:10.2528/PIER13111403

13. Wang, G.-D., J.-F. Chen, X. Hu, Z.-Q. Chen, and M. Liu, "Polarization-insensitive triple-band microwave metamaterial absorber based on rotated square rings," Progress In Electromagnetics Research, Vol. 145, 175-183, 2014.
doi:10.2528/PIER14010401

14. Singh, A. K., M. P. Abegaonkar, and S. K. Koul, "Penta band polarization insensitive metamaterial absorber for EMI/EMC reduction and defense applications," 2017 IEEE MTT-S International Microwave and RF Conference (IMaRC), 1-5, Ahmedabad, 2017.

15. Singh, A. K., M. P. Abegaonkar, and S. K. Koul, "High gain and high aperture efficiency cavity resonator antenna using metamaterial superstrate," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2388-2391, 2017.
doi:10.1109/LAWP.2017.2719864

16. Muzaffar, K., S. Tuli, and S. Koul, "Determination of polarization of microwave signals by lock-in infrared thermography," IETE Journal of Research, Vol. 62, No. 1, 81-90, 2016.

17. Singh, A. K., M. P. Abegaonkar, and S. K. Koul, "Dual- and triple-band polarization insensitive ultrathin conformal metamaterial absorbers with wide angular stability," IEEE Transactions on Electromagnetic Compatibility, Vol. 3, 1-9, 2018.
doi:10.1109/TEMC.2018.2839881

18. Bakır, M., M. Karaaslan, F. Dincer, K. Delihacioglu, and C. Sabah, "Tunable perfect metamaterial absorber and sensor applications," Journal of Materials Science: Materials in Electronics, Vol. 27, No. 11, 12091-12099, 2017.
doi:10.1007/s10854-016-5359-7