1. Boerner, D. E., "Controlled source electromagnetic deep sounding: Theory, results and correlation with natural source results," Surveys in Geophysics, Vol. 13, No. 4–5, 435-488, 1992. Google Scholar
2. Parise, M., "Exact electromagnetic field excited by a vertical magnetic dipole on the surface of a lossy half-space," Progress In Electromagnetics Research B, Vol. 23, 69-82, 2010. Google Scholar
3. Kong, F. N., S. E. Johnstad, and J. Park, "Wavenumber of the guided wave supported by a thin resistive layer in marine controlled-source electromagnetics," Geophysical Prospecting, Vol. 29, No. 10, 1301-1307, 2003. Google Scholar
4. Shastri, N. L. and H. P. Patra, "Multifrequency sounding results of laboratory simulated homogeneous and two-Layer earth models," IEEE Trans. Geosci. Remote Sensing, Vol. 26, No. 6, 749-752, 1988. Google Scholar
5. Farquharson, C. G., D. W. Oldenburg, and P. S. Routh, "Simultaneous 1D inversion of loop-loop electromagnetic data for magnetic susceptibility and electrical conductivity," Geophysics, Vol. 68, No. 6, 1857-1869, 2003. Google Scholar
6. Ward, S. H. and G. W. Hohmann, "Electromagnetic theory for geophysical applications," Electromagnetic Methods in Applied Geophysics, Theory, Vol. 1, 131-308, edited by M. N. Nabighian, SEG, Tulsa, Oklahoma, 1988. Google Scholar
7. Zhdanov, M. S., Geophysical Electromagnetic Theory and Methods, Elsevier, 2009.
8. Beard, L. P. and J. E. Nyquist, "Simultaneous inversion of airborne electromagnetic data for resistivity and magnetic permeability," Geophysics, Vol. 63, No. 5, 1556-1564, 1998. Google Scholar
9. Parise, M., "Quasi-static vertical magnetic field of a large horizontal circular loop located at the earth's surface," Progress In Electromagnetics Research Letters, Vol. 62, 29-34, 2016. Google Scholar
10. Wait, J. R., "Mutual electromagnetic coupling of loops over a homogeneous ground," Geophysics, Vol. 20, No. 3, 630-637, 1955. Google Scholar
11. Spies, B. R. and F. C. Frischknecht, "Electromagnetic sounding," Electromagnetic Methods in Applied Geophysics, Vol. 2, 285-426, edited by M. N. Nabighian, SEG, Tulsa, Oklahoma, 1988. Google Scholar
12. Parise, M., "Second-order formulation for the quasi-static field from a vertical electric dipole on a lossy half-space," Progress In Electromagnetics Research, Vol. 136, 509-521, 2013. Google Scholar
13. Tiwari, K. C., D. Singh, and M. K. Arora, "Development of a model for detection and estimation of depth of shallow buried non-metallic landmine at microwave x-band frequency," Progress In Electromagnetics Research, Vol. 79, 225-250, 2008. Google Scholar
14. Telford, W. M., L. P. Geldart, and R. E. Sheriff, Applied Geophysics, Cambridge University Press, 1990.
15. Parise, M., "An exact series representation for the EM field from a circular loop antenna on a lossy half-space," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 23-26, 2014. Google Scholar
16. Parise, M., "Full-wave analytical explicit expressions for the surface fields of an electrically large horizontal circular loop antenna placed on a layered ground," IET Microwaves, Antennas & Propagation, Vol. 11, 929-934, 2017. Google Scholar
17. Palacky, G. J., "Resistivity characteristics of geologic targets," Electromagnetic Methods in Applied Geophysics, Vol. 1, 52-129, Nabighian, M. N., Ed., SEG, Tulsa, Oklahoma, 1988. Google Scholar
18. Parise, M., "On the surface fields of a small circular loop antenna placed on plane stratified earth," International Journal of Antennas and Propagation, Vol. 2015, 1-8, 2015. Google Scholar
19. Singh, N. P. and T. Mogi, "Electromagnetic response of a large circular loop source on a layered earth: A new computation method," Pure and Applied Geophysics, Vol. 162, 181-200, 2005. Google Scholar
20. Parise, M., "Efficient computation of the surface fields of a horizontal magnetic dipole located at the air-ground interface," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 29, 653-664, 2016. Google Scholar
21. Wait, J. R., "Fields of a horizontal loop antenna over a layered half-space," Journal of Electromagnetic Waves and Applications, Vol. 9, 1301-1311, 1995. Google Scholar
22. Parise, M. and G. Antonini, "On the inductive coupling between two parallel thin-wire circular loop antennas," IEEE Trans. on Electromagnetic Compatibility, Vol. 60, No. 6, 1865-1872, 2018. Google Scholar
23. Kong, J. A., L. Tsang, and G. Simmons, "Geophysical subsurface probing with radio-frequency interferometry," IEEE Transactions on Antennas and Propagation, Vol. 22, No. 4, 616-620, 1974. Google Scholar
24. Singh, N. P. and T. Mogi, "Effective skin depth of EM fields due to large circular loop and electric dipole sources," Earth Planets Space, Vol. 55, 301-313, 2003. Google Scholar
25. Parise, M., "On the use of cloverleaf coils to induce therapeutic heating in tissues," Journal of Electromagnetic Waves and Applications, Vol. 25, 1667-1677, 2011. Google Scholar
26. Ryu, J., H. F. Morrison, and S. H. Ward, "Electromagnetic fields about a loop source of current," Geophysics, Vol. 35, No. 5, 862-896, 1970. Google Scholar
27. Parise, M., "Fast computation of the forward solution in controlled-source electromagnetic sounding problems," Progress In Electromagnetics Research, Vol. 111, 119-139, 2011. Google Scholar
28. Watson, G. N., A Treatise on the Theory of Bessel Functions, Cambridge University Press, 1994.
29. Parise, M., "Improved Babylonian square root algorithm-based analytical expressions for the surface-to-surface solution to the Sommerfeld half-space problem," IEEE Transactions on Antennas and Propagation, Vol. 63, 5832-5837, 2015. Google Scholar
30. Parise, M., "An exact series representation for the EM field from a vertical electric dipole on an imperfectly conducting half-space," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 8, 932-942, 2014. Google Scholar