1. Balanis, C. A., Antenna Theory Analysis and Design, 3rd Ed., Wiley, 2011.
2. Kumar, G. and K. P. Ray, Broadband Microstrip Antennas, Artech House, 2003.
3. Hannachi, C. and S. O. Tatu, "Performance comparison of 60 GHz printed patch antennas with different geometrical shapes using miniature hybrid microwave integrated circuits technology," IET Microwaves, Antennas & Propagation, Vol. 11, No. 1, 106-112, Jan. 2017.
doi:10.1049/iet-map.2015.0720 Google Scholar
4. Fan, S. T., Y. Z. Yin, B. Lee, W. Hu, and X. Yang, "Bandwidth enhancement of a printed slot antenna with a pair of parasitic patches," IEEE Antennas and Wireless Propag. Lett., Vol. 11, 1230-1233, 2012.
doi:10.1109/LAWP.2012.2224311 Google Scholar
5. Wong, H., K. K. So, and X. Gao, "Bandwidth enhancement of a monopolar patch antenna with V-shaped slot for car-to-car and WLAN communications," IEEE Trans. Veh. Technol.,, Vol. 65, No. 3, 1130-1136, Mar. 2016.
doi:10.1109/TVT.2015.2409886 Google Scholar
6. Sallam, M. O., S. M. Kandil, V. Volski, G. A. E. Vandenbosch, and E. A. Soliman, "Wideband CPW-fed flexible bow-tie slot antenna for WLAN/WiMAX systems," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 8, 4274-4277, Aug. 2017.
doi:10.1109/TAP.2017.2710227 Google Scholar
7. Aanandan, C. K., P. Mohanan, and K. G. Nair, "Broad-band gap coupled microstrip antenna," IEEE Transactions on Antennas and Propagation, Vol. 38, No. 10, 1581-1586, 1990.
doi:10.1109/8.59771 Google Scholar
8. Wood, C., "Improved bandwidth of microstrip antennas using parasitic elements," IEE Proc. --- Microw. Antennas Propag., Vol. 127, No. 4, 231-234, Aug. 1980. Google Scholar
9. Kumar, G. and K. Gupta, "Broad-band microstrip antennas using additional resonators gap-coupled to the radiating edges," ” IEEE Transactions on Antennas and Propagation, Vol. 32, No. 12, 1375-1379, Dec. 1984.
doi:10.1109/TAP.1984.1143264 Google Scholar
10. Deshmukh, A. A., S. Nagarbowdi, P. A. Kadam, and A. A. Odhekar, "Broadband gap-coupled isosceles triangular microstrip antennas," 2017 International Conference on Emerging Trends & Innovation in ICT (ICEI), 67-72, Pune, 2017.
doi:10.1109/ETIICT.2017.7977012 Google Scholar
11. Nirate, S., R. M. Yadahalli, K. K. Usha, R. M. Vani, and P. V. Hunagund, "Wideband gap-coupled suspended rectangular microstrip antenna," 2008 International Conference on Recent Advances in Microwave Theory and Applications, 833-835, Jaipur, 2008.
doi:10.1109/AMTA.2008.4763126 Google Scholar
12. Bhalekar, P., L. K. Ragha, and R. Gupta, "Wideband gap coupled microstrip antenna using RIS and RIS cavity resonator," 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), 1291-1295, Bangalore, 2017. Google Scholar
13. Rathod, S. M., R. N. Awale, K. P. Ray, and A. D. Chaudhari, "A compact gap coupled half-hexagonal microstrip antenna with improved bandwidth," 2017 IEEE Applied Electromagnetics Conference (AEMC), 1-2, Aurangabad, 2017. Google Scholar
14. Ponchak, G. E. and R. N. Simons, "A new rectangular waveguide to coplanar waveguide transition," IEEE MTT-S Int. Dig., 491-492, 1990. Google Scholar
15. Hannachi, C., T. Djerafi, and S. O. Tatu, "Broadband E-band WR12 to microstrip line transition using a ridge structure on high-permittivity thin-film material," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 7, 552-554, July 2018.
doi:10.1109/LMWC.2018.2835475 Google Scholar
16. Nasr, M. A. and A. A. Kishk, "Wideband inline coaxial to ridge waveguide transition with tuning capability for ridge gap waveguide," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 6, 2757-2766, 2018.
doi:10.1109/TMTT.2018.2815690 Google Scholar
17. Corporation, A., Ansoft High Frequency Structure Simulation (HFSS), Version 13, 2010.
18. Hannachi, C., D. Hammou, T. Djerafi, Z. Ouardirhi, and S. O. Tatu, "Complete characterization of novel MHMICs for V-band communication systems," Journal of Electrical and Computer Engineering, 1-7, Article ID 686708, 2013. Google Scholar
19. Hannachi, C. and S. O. Tatu, "A compact V-band planar gap-coupled antenna array: Improved design and analysis," IEEE Access, Vol. 5, 8763-8770, 2017.
doi:10.1109/ACCESS.2017.2705484 Google Scholar