1. Einstein, B. P. and N. Rosen, "Can quantum-mechanical description of physical reality be considered complete?," Phys. Rev., Vol. 47, 777, 1935.
doi:10.1103/PhysRev.47.777 Google Scholar
2. Bohr, N., "Can quantum-mechanical description of physical reality be considered complete?," Phys. Rev., Vol. 48, 696-702, 1935.
doi:10.1103/PhysRev.48.696 Google Scholar
3. Sadeghi, P., S. Khademi, and S. Nasiri, "Nonclassicality indicator for the real phase-space distribution function ," Phys. Rev. A, Vol. 82, 012102, 2010.
doi:10.1103/PhysRevA.82.012102 Google Scholar
4. Naeimi, G., S. Alipour, and S. Khademi, "A photon counting and a squeezing measurement method by the exact absorption and dispersion spectrum of Λ-type atoms," Springer Plus, Vol. 5, 1402, 2016.
doi:10.1186/s40064-016-3014-7 Google Scholar
5. He, X. L., Q. P. Su, F. Y. Zhang, and C. P. Yang, "Generating multipartite entangled states of qubits distributed in different cavities," Quantum Information Processing, Vol. 13, 1381-1395, 2014.
doi:10.1007/s11128-014-0734-x Google Scholar
6. Shahidani, S., M. H. Naderi, M. Soltanolkotabi, and S. Barzanjeh, "Steady-state entanglement, cooling, and tristability in a nonlinear optomechanical cavity," JOSA B, Vol. 31, 1087-1095, 2014.
doi:10.1364/JOSAB.31.001087 Google Scholar
7. Khademi, S., G. Naeimi, and O. Heibati, "A simple scheme for generation of N-qubits entangled stated," Applied Mathematics and Physics, Vol. 2, 1-3, 2014. Google Scholar
8. Xiong, W. and L. Ye, "Schemes for entanglement concentration of two unknown partially entangled states with cross-Kerr nonlinearity," JOSA B, Vol. 28, 2030-2037, 2011.
doi:10.1364/JOSAB.28.002030 Google Scholar
9. Wolters, J., J. Kabuss, A. Knorr, and O. Benson, "Deterministic and robust entanglement of nitrogen-vacancy centers using low-Q photonic-crystal cavities," Phys. Rev. A, Vol. 89, 060303(R), 2014.
doi:10.1103/PhysRevA.89.060303 Google Scholar
10. Kaiser, F., L. A. Ngah, A. Issautier, T. Delord, D. Aktas, V. DAuria, M. P. De Micheli, A. Kastberg, L. Labonte, O. Alibart, A. Martin, and S. Tanzilli, "Polarization entangled photon-pair source based on quantum nonlinear photonics and interferometry," Optics Communications, Vol. 327, 7-16, Special Issue on Nonlinear Quantum Photonics, 2014.
doi:10.1016/j.optcom.2014.03.056 Google Scholar
11. Schliemann, J., "Entanglement thermodynamics," J. Stat. Mech., P09011, 2014.
doi:10.1088/1742-5468/2014/09/P09011 Google Scholar
12. Brune, M., S. Haroche, J. M. Raimond, L. Davidovich, and N. Zagury, "Manipulation of photons in a cavity by dispersive atom-field coupling: Quantum-nondemolition measurements and generation of ``Schrödinger cat” states," Phys. Rev. A, Vol. 45, 5193, 1992.
doi:10.1103/PhysRevA.45.5193 Google Scholar
13. Raimond, J. M., M. Brune, and S. Haroche, "Manipulating quantum entanglement with atoms and photons in a cavity," Rev. Mod. Phys., Vol. 73, 565, 2001.
doi:10.1103/RevModPhys.73.565 Google Scholar
14. Khademi, S. and S. Alipour, "A non-demolition photon counting method by four-level inverted Y-type atom," International Journal of Optics and Photonics, Vol. 11, 63-74, 2017.
doi:10.18869/acadpub.ijop.11.1.63 Google Scholar
15. Bussieres, F., C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, "Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory," Nature Photonics, Vol. 8, 775-778, 2014.
doi:10.1038/nphoton.2014.215 Google Scholar
16. Luda, M. A., M. A. Larotonda, J. P. Paz, and C. T. Schmiegelow, "Manipulating transverse modes of photons for quantum cryptography," Phys. Rev. A, Vol. 89, 042325, 2014.
doi:10.1103/PhysRevA.89.042325 Google Scholar
17. Sridhar, N., R. Shahrokhshahi, A. J. Miller, B. Calkins, T. Gerrits, A. Lita, S. W. Nam, and O. Pfister, "Direct measurement of the Wigner function by photon-number-resolving detection," JOSA B, Vol. 31, B34-B40, 2014.
doi:10.1364/JOSAB.31.000B34 Google Scholar
18. Banaszek, K., C. Radzewicz, K. Wodkiewicz, and J. S. Krasinski, "Direct measurement of the Wigner function by photon counting," Phys. Rev. A, Vol. 60, 674-677, 1999.
doi:10.1103/PhysRevA.60.674 Google Scholar
19. Naeimi, G., S. Khademi, and O. Heibati, "A method for the measurement of photons number and squeezing parameter in a quantum cavity," ISRN Optics, 271951, 2013. Google Scholar
20. Zheng, S. B., "Quantum-information processing and multiatom-entanglement engineering with a thermal cavity," Phys. Rev. A, Vol. 66, 060303(R), 2002.
doi:10.1103/PhysRevA.66.060303 Google Scholar
21. Li, W. and I. Lesanovsky, "Entangling quantum gate in trapped ions via Rydberg blockade," Applied Physics B, Vol. 114, 37-44, 2014.
doi:10.1007/s00340-013-5709-6 Google Scholar
22. Johansen, L. M., "Bell’s inequality for the Mach-Zehnder interferometer," Phys. Lett. A, Vol. 21, 15-18, 1996.
doi:10.1016/0375-9601(96)00437-9 Google Scholar
23. Kang, K. and K. H. Lee, "Violation of Bell’s inequality in electronic Mach-Zehnder interferometers," Physica E: Low-dimensional Systems and Nanostructures, Vol. 40, 1395-1397, 2008.
doi:10.1016/j.physe.2007.09.124 Google Scholar
24. Ji, Y., Y. Chung, D. Sprinzak, M. Heiblum, D. Mahalu, and H. Shtrikman, "An electronic Mach-Zehnder interferometer," Nature, Vol. 422, 415-418, 2003.
doi:10.1038/nature01503 Google Scholar
25. Seigneur, H. P., M. N. Leuenberger, and W. V. Schoenfeld, "Single-photon Mach-Zehnder interferometer for quantum networks based on the single-photon Faraday effect," J. Appl. Phys., Vol. 104, 014307, 2008.
doi:10.1063/1.2948924 Google Scholar
26. Carlos Ryff, L. and P. H. Souto Ribeiro, "Mach-Zehnder interferometer for a two-photon wave packet," Phys. Rev. A, Vol. 63, 023801, 2001.
doi:10.1103/PhysRevA.63.023801 Google Scholar
27. Vyshnevyy, A. A., G. B. Lesovik, T. Jonckheere, and T. Martin, "Setup of three Mach-Zehnder interferometers for production and observation of Greenberger-Horne-Zeilinger entanglement of electrons," Phys. Rev. B, Vol. 87, 165417, 2013.
doi:10.1103/PhysRevB.87.165417 Google Scholar
28. Nady Abdul Aleem, M., K. F. A. Hussein, and A.-E.-H. A.-E.-A. Ammar, "Ultrafast all-optical full adder using quantum-dot semiconductor optical amplifier-based Mach-Zehnder interferometer," Progress In Electromagnetics Research B, Vol. 54, 69-88, 2013.
doi:10.2528/PIERB13063006 Google Scholar
29. Dimitriadou, E. and K. E. Zoiros, "On the feasibility of 320 GB/S all-optical and gate using quantum-dot semiconductor optical amplifier-based Mach-Zehnder interferometer," Progress In Electromagnetics Research B, Vol. 50, 113-140, 2013.
doi:10.2528/PIERB13013108 Google Scholar
30. Gerry, C. and P. Knight, Introductory Quantum Optics, University Press, Cambridge, 2004.
doi:10.1017/CBO9780511791239
31. Scully, M. O. and M. S. Zubairy, Quantum Optics, University Press, Cambridge, 1997.
doi:10.1017/CBO9780511813993