1. He, Z., J. Cai, Z. Shao, X. Li, and Y. Huang, "A novel power divider integrated with SIW and DGS technology," Progress In Electromagnetics Research, Vol. 139, 289-301, 2013.
doi:10.2528/PIER13022005 Google Scholar
2. Hesari, S. S. and J. Bornemann, "Substrate integrated waveguide crossover formed by orthogonal TE102 resonators," European Microwave Conference (EuMC), 17-20, 2017. Google Scholar
3. Zhang, X. C., Z. Y. Yu, and J. Xu, "Novel band-pass Substrate Integrated Waveguide (SIW) filter based on Complementary Split Ring Resonators (CSRRs)," Progress In Electromagnetics Research, Vol. 72, 39-46, 2007.
doi:10.2528/PIER07030201 Google Scholar
4. Cassivi, Y., L. Perregrini, P. Arcioni, M. Bressan, K. Wu, and G. Conciauro, "Dispersion characteristics of substrate integrated rectangular waveguide," IEEE Microw. Wireless Compon. Lett., Vol. 12, No. 9, 333-335, 2002.
doi:10.1109/LMWC.2002.803188 Google Scholar
5. Horng, S. T., "A rigorous study of microstrip crossovers and their possible improvements," IEEE Trans. Microw. Theory Tech., Vol. 42, No. 9, 1802-1806, 1994.
doi:10.1109/22.310591 Google Scholar
6. Becksa, T. and I. Wolff, "Analysis of 3-D metallization structures by a fullwave spectral-domain technique," IEEE Trans. Microw. Theory Tech., Vol. 40, No. 12, 2219-2227, 1992.
doi:10.1109/22.179883 Google Scholar
7. Yang, Y. H. and G. N. Alexopoulos, "Basic blocks for high-frequency interconnects," IEEE Trans. Microw. Theory Tech., Vol. 36, No. 8, 1258-1264, 1988.
doi:10.1109/22.3667 Google Scholar
8. Wight, S. J., J. W. Chudobiak, and V. Makios, "A microstrip and stripline crossover structure," IEEE Trans. Microw. Theory Tech., Vol. 24, No. 5, 270-270, 1976.
doi:10.1109/TMTT.1976.1128838 Google Scholar
9. Yao, J., C. Lee, and P. S. Yeo, "Microstrip branch-line couplers for crossover application," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 1, 87-92, 2011.
doi:10.1109/TMTT.2010.2090695 Google Scholar
11. Djerafi, T. and K. Wu, "60 GHz substrate integrated waveguide crossover structure," European Microwave Conference (EuMC), 1014-1017, 2009. Google Scholar
12. Guntupalli, A., T. Djerafi, and K. Wu, "Ultra-compact millimeter-wave substrate integrated waveguide crossover structure utilizing simultaneous electric and magnetic coupling," IEEE/MTTS Int. Microw. Symp. Dig., 1-3, 2009. Google Scholar
13. Han, S., K. Zhou, J. Zhang, C. Zhou, and W. Wu, "Novel substrate integrated waveguide filtering crossover using orthogonal degenerate modes," IEEE Microw. Wireless Compon. Lett., Vol. 27, No. 9, 803-805, 2017.
doi:10.1109/LMWC.2017.2734842 Google Scholar
14. Abbosh, A., S. Ibrahi, and M. Karim, "A wideband single-layer crossover using substrate integrated waveguide to grounded coplanar waveguide transition," Microw. Opt. Technol. Lett., Vol. 59, No. 11, 2757-2762, 2017.
doi:10.1002/mop.30814 Google Scholar
15. Zhou, Y., K. Zhou, J. Zhang, C. Zhou, and W. Wu, "Miniaturized substrate integrated waveguide filtering crossover," IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS), 1-3, 2017. Google Scholar