Vol. 85
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-07-01
Performance Evaluation of a Star-Shaped Patch Antenna on Polyimide Film Under Various Bending Conditions for Wearable Applications
By
Progress In Electromagnetics Research Letters, Vol. 85, 125-130, 2019
Abstract
This paper proposes a prototype of a flexible antenna which utilizes a star patch design. The work seeks feasibility of the star patch antenna to maintain its characteristic when it is bending on a curvy structure. The patch antenna is fabricated on a 0.8 mm thickness, h of polyimide film with a dielectric permittivity, εr of 3.4. The simulation result in Computer Simulation Technology Microwave Studio (CST MWS®) software shows that the antenna provides a -10 dB bandwidth of 24.9% at 2.45 GHz with a minimum reflection coefficient, S11 of -27.67 dB in the flat condition. The stability in its performance has been noticed in which the shift in the resonant frequency is less than 2% when the structure is bending on a curvy surface with a radius of 90 mm. The measured results in terms of reflection coefficient, bandwidth, radiation pattern and gain demonstrate a good agreement with the simulated results.
Citation
Fauziahanim Che Seman, Faisal Ramadhan, Nurul Syafeeqa binti Ishak, Rudy Yuwono, Zuhairiah Zainal Abidin, Samsul Haimi Dahlan, Shaharil Mohd Shah, and Adel Yahya Isa Ashyap, "Performance Evaluation of a Star-Shaped Patch Antenna on Polyimide Film Under Various Bending Conditions for Wearable Applications," Progress In Electromagnetics Research Letters, Vol. 85, 125-130, 2019.
doi:10.2528/PIERL19022102
References

1. MohdRais, N. H., P. J. Soh, M. F. A. Malek, and G. A. E. Vandenbosch, "Dual-band suspended-plate wearable textile antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 583-586, 2013.
doi:10.1109/LAWP.2013.2259211

2. Whittow, W. G., et al. "Inkjet-printed microstrip patch antennas realized on textile for wearable applications," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 71-74, 2014.
doi:10.1109/LAWP.2013.2295942

3. Chen, S. J. and C. Fumeaux, "Wearable antennas based on graphite paper and conductive polymer," 12th European Conference on Antennas and Propagation (EuCAP 2018), 1-4, London, 2018.

4. Sabban, A., "Small wearable antennas for wireless communication and medical systems," 2018 IEEE Radio and Wireless Symposium (RWS), 161-164, Anaheim, CA, 2018.
doi:10.1109/RWS.2018.8304974

5. Li, W., W. Chung, F. Hsiao, T. Kao, and M. Huang, "Conformal integrated multi-layer thin-film antenna by novel LITA technologies for smartwatch wearable device applications," 2016 International Symposium on Antennas and Propagation (ISAP), 22-23, Okinawa, 2016.

6. Poonkuzhali, R., Z. C. Alex, and T. N. Balakrishnan, "Miniaturized wearable fractal antenna for military applications at VHF band," Progress In Electromagnetics Research C, Vol. 62, 179-190, 2016.
doi:10.2528/PIERC15070105

7. Seman, F. C., C. Manoharen, Z. Z. Abidin, and F. A. Poad, "Performance evaluation and implementation of semi-flexible dipole antenna for Internet of Things applications," 2017 IEEE Asia Pacific Microwave Conference (APMC), 158-161, Kuala Lumpar, 2017.

8. Ahmed, S., F. A. Tahir, A. Shamim, and H. M. Cheema, "A compact kapton-based inkjet-printed multiband antenna for flexible wireless devices," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1802-1805, 2015.
doi:10.1109/LAWP.2015.2424681

9. Khaleel, H. R., H. M. Al-Rizzo, D. G. Rucker, and S. Mohan, "A compact polyimide-based UWB antenna for flexible electronics," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 564-567, 2012.
doi:10.1109/LAWP.2012.2199956

10. Yuningtias, E., R. Yuwono, E. B. Purnomowati, G. Dhuha, and F. Ramadhan, "Star patch microstrip antenna for UWB," The 14th International Conference on Quality in Research, (QiR), 2015.

11. Jilani, S. F., H. Ur-Rahman, and M. N. Iqbal, "Novel star-shaped fractal design of rectangular patch antenna for improved gain and bandwidth," 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), 1486-1487, Orlando, FL, 2013.

12. Ashyap, A. Y. I., Z. Z. Abidin, S. H. Dahlan, H. A. Majid, and F. C. Seman, "A compact wearable antenna using EBG for smart-watch applications," 2018 Asia-Pacific Microwave Conference (APMC), 1477-1479, Kyoto, 2018.

13. Mayhew-Ridgers, G., P. A. van Jaarsveld, J. W. Odendaal, and J. Joubert, "Accurate gain measurements for large antennas using modified gain-transfer method," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 369-371, 2014.
doi:10.1109/LAWP.2014.2306256