Vol. 84
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-06-09
An Accurate Explicit Expression for the Self Inductance of Thin-Wire Round Pancake Coils
By
Progress In Electromagnetics Research Letters, Vol. 84, 147-153, 2019
Abstract
This paper presents an accurate analytical explicit expression for the self-inductance of a flat pancake round coil made up of concentric turns. The expression is obtained by converting the semi-infinite integral representation for the mutual inductance between two arbitrary turns of the coil into a finite integral, and then by expanding the integrand into a series of Legendre polynomials. As a result, a sum of simpler integrals is obtained, whose analytical evaluation is straightforward. The self inductance is finally expressed as the sum of logarithmic functions, describing the contributions from the self-inductances of the single turns, plus the mutual-inductance terms originating from all the possible pairs of turns of the coil, each one given by a power series of the ratio between the radii of the turns. Numerical simulations are performed to illustrate the advantages of the proposed solution.
Citation
Luisa Di Paola, and Marco Muzi, "An Accurate Explicit Expression for the Self Inductance of Thin-Wire Round Pancake Coils," Progress In Electromagnetics Research Letters, Vol. 84, 147-153, 2019.
doi:10.2528/PIERL19022304
References

1. Trivino-Cabrera, A., J. Aguado, and J. M. Gonzalez, "Analytical characterisation of magnetic field generated by ICPT wireless charger," Electronics Letters, Vol. 53, 871-873, 2017.
doi:10.1049/el.2017.0968

2. Fu, M., H. Yin, and C. Ma, "Megahertz multiple-receiver wireless power transfer systems with power flow management and maximum efficiency point tracking," IEEE Trans. Microwave Theory Techniques, Vol. 65, 4285-4293, 2017.
doi:10.1109/TMTT.2017.2689747

3. Niitsu, K., Y. Sugimori, Y. Kohama, K. Osada, N. Irie, H. Ishikuro, and T. Kuroda, "Analysis and techniques for mitigating interference from power/signal lines and to sram circuits in cmos inductive-coupling link for low-power 3-d system integration," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 19, 1902-1907, 2011.
doi:10.1109/TVLSI.2010.2056711

4. Kwiat, D., S. Saoub, and S. Einav, "Calculation of the mutual induction between coplanar circular surface coils in magnetic resonance imaging," IEEE Transactions on Biomedical Engineering, Vol. 39, 433-436, 1992.
doi:10.1109/10.135536

5. Angelidis, P., K. Vassiliadis, and G. D. Sergiadi, "Lowest mutual coupling between closely spaced loop antennas," IEEE Transactions on Antennas and Propagation, Vol. 39, 949-953, 1991.
doi:10.1109/8.86914

6. Zhdanov, M. S., Geophysical Electromagnetic Theory and Methods, Elsevier, Amsterdam, 2009.

7. Parise, M., V. Tamburrelli, and G. Antonini, "Mutual impedance of thin-wire circular loops in near-surface applications," IEEE Transactions on Electromagnetic Compatibility, Vol. 61, 558-563, 2019.
doi:10.1109/TEMC.2018.2816030

8. Paul, C. R., Inductance: Loop and Partial, John Wiley & Sons, Hoboken, NJ, USA, 2010.

9. Parise, M., "Fast computation of the forward solution in controlled-source electromagnetic sounding problems," Progress In Electromagnetics Research, Vol. 111, 119-139, 2011.
doi:10.2528/PIER10101409

10. Parise, M., "Exact electromagnetic field excited by a vertical magnetic dipole on the surface of a lossy half-space," Progress In Electromagnetics Research B, Vol. 23, 69-82, 2010.
doi:10.2528/PIERB10060707

11. Farquharson, C. G., D. W. Oldenburg, and P. S. Routh, "Simultaneous 1D inversion of loop-loop electromagnetic data for magnetic susceptibility and electrical conductivity," Geophysics, Vol. 68, No. 6, 1857-1869, 2003.
doi:10.1190/1.1635038

12. Parise, M., "Efficient computation of the surface fields of a horizontal magnetic dipole located at the air-ground interface," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 29, 653-664, 2016.
doi:10.1002/jnm.2120

13. Wait, J. R., "Mutual electromagnetic coupling of loops over a homogeneous ground," Geophysics, Vol. 20, No. 3, 630-637, 1955.
doi:10.1190/1.1438167

14. Beard, L. P. and J. E. Nyquist, "Simultaneous inversion of airborne electromagnetic data for resistivity and magnetic permeability," Geophysics, Vol. 63, No. 5, 1556-1564, 1998.
doi:10.1190/1.1444452

15. Parise, M., "Quasi-static vertical magnetic field of a large horizontal circular loop located at the earth’s surface," Progress In Electromagnetics Research Letters, Vol. 62, 29-34, 2016.
doi:10.2528/PIERL16053003

16. Ward, S. H. and G. W. Hohmann, "Electromagnetic theory for geophysical applications," Electromagnetic Methods in Applied Geophysics, Theory --- Volume 1, 131-308, edited by M. N. Nabighian, SEG, Tulsa, Oklahoma, 1988.

17. Spies, B. R. and F. C. Frischknecht, "Electromagnetic sounding," Electromagnetic Methods in Applied Geophysics, Volume 2, 285-426, edited by M. N. Nabighian, SEG, Tulsa, Oklahoma, 1988.

18. Parise, M., "Second-order formulation for the quasi-static field from a vertical electric dipole on a lossy half-space," Progress In Electromagnetics Research, Vol. 136, 509-521, 2013.
doi:10.2528/PIER12112508

19. Tiwari, K. C., D. Singh, and M. K. Arora, "Development of a model for detection and estimation of depth of shallow buried non-metallic landmine at microwave x-band frequency," Progress In Electromagnetics Research, Vol. 79, 225-250, 2008.
doi:10.2528/PIER07100201

20. Telford, W. M., L. P. Geldart, and R. E. Sheriff, Applied Geophysics, Cambridge University Press, New York, 1990.
doi:10.1017/CBO9781139167932

21. Parise, M., "An exact series representation for the EM field from a circular loop antenna on a lossy half-space," IEEE Antennas and Wireless Prop. Letters, Vol. 13, 23-26, 2014.
doi:10.1109/LAWP.2013.2296149

22. Werner, D. H., "An exact integration procedure for vector potentials of thin circular loop antennas," IEEE Transactions on Antennas and Propagation, Vol. 44, 157-165, 1996.

23. Parise, M., "Full-wave analytical explicit expressions for the surface fields of an electrically large horizontal circular loop antenna placed on a layered ground," IET Microwaves, Antennas & Propagation, Vol. 11, 929-934, 2017.

24. Zierhofer, C. M. and E. S. Hochmair, "Geometric approach for coupling enhancement of magnetically coupled coils," IEEE Transactions on Biomedical Engineering, Vol. 43, 708-714, 1996.

25. Parise, M., "On the surface fields of a small circular loop antenna placed on plane stratified earth," International Journal of Antennas and Propagation, Vol. 2015, 1-8, 2015.

26. Singh, N. P. and T. Mogi, "Electromagnetic response of a large circular loop source on a layered earth: A new computation method," Pure and Applied Geophysics, Vol. 162, 181-200, 2005.

27. Wait, J. R., "Fields of a horizontal loop antenna over a layered half-space," Journal of Electromagnetic Waves and Applications, Vol. 9, No. 10, 1301-1311, 1995.

28. Parise, M. and G. Antonini, "On the inductive coupling between two parallel thin-wire circular loop antennas," IEEE Transactions on Electromagnetic Compatibility, Vol. 60, No. 6, 1865-1872, 2018.

29. Singh, N. P. and T. Mogi, "Effective skin depth of EM fields due to large circular loop and electric dipole sources," Earth Planets Space, Vol. 55, 301-313, 2003.

30. Parise, M., "A study on energetic efficiency of coil antennas used for RF diathermy," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 385-388, 2011.

31. Parise, M., "On the use of cloverleaf coils to induce therapeutic heating in tissues," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 11–12, 1667-1677, 2011.

32. Parise, M. and S. Cristina, "High-order electromagnetic modeling of shortwave inductive diathermy effects," Progress in Electromagnetics Research, Vol. 92, 235-253, 2009.

33. Bregg, R. K., Horizons in Polymer Research, Nova Publishers, New York, 2005.

34. Vafeas, P., A. Skarlatos, T. Theodoulidis, and D. Lesselier, "Semi-analytical method for the identification of inclusions by air-cored coil interaction in ferromagnetic media," Mathematical Methods in the Applied Sciences, Vol. 41, 6422-6442, 2018.

35. Vafeas, P., G. Perrusson, and D. Lesselier, "Low-frequency scattering from perfectly conducting spheroidal bodies in a conductive medium with magnetic dipole excitation," International Journal of Engineering Science, Vol. 47, 372-390, 2009.

36. Vafeas, P., P. K. Papadopoulos, and D. Lesselier, "Electromagnetic low-frequency dipolar excitation of two metal spheres in a conductive medium," Journal of Applied Mathematics, Vol. 2012, 1-37, Article ID 628261, 2012.

37. Watson, G. N., A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, UK, 1994.

38. Parise, M., "Exact EM field excited by a short horizontal wire antenna lying on a conducting soil," AEU --- International Journal of Electronics and Communications, Vol. 70, No. 5, 676-680, 2016.

39. Parise, M., Transverse magnetic field of infinite line source placed on ground surface, Vol. 51, No. 19, 1478-1480, Electronics Letters, 2015.

40. Parise, M., "Improved Babylonian square root algorithm-based analytical expressions for the surface-to-surface solution to the Sommerfeld half-space problem," IEEE Transactions on Antennas and Propagation, Vol. 63, 5832-5837, 2015.

41. Hayek, S. I., Advanced Mathematical Methods in Science and Engineering, 2nd Ed., Chapman and Hall/CRC, New York, 2010.

42. Parise, M., "An exact series representation for the EM field from a vertical electric dipole on an imperfectly conducting half-space," Journal of Electromagnetic Waves and Applications, Vol. 2, No. 8, 932-942, 2014.

43. Kamon, M., M. J. Tsuk, and J. K. White, "FASTHENRY: A multipole accelerated 3-D inductance extraction program," IEEE Transactions on Microwave theory and techniques, Vol. 42, No. 9, 1750-1758, 1994.