Vol. 85
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-07-08
Performance Evaluation of OADM for Super Dense Wavelength Division Multiplexing System
By
Progress In Electromagnetics Research Letters, Vol. 85, 131-135, 2019
Abstract
Performance of optical add-drop multiplexer (OADM) for 400 channels with data rate of 20 Gbps for super dense wavelength division (SD-WDM) multiplexing system has been investigated in terms of varying transmission distance from 50 km to 250 km and 80 km to 240 km for enhancing optical communication. Long haul amplification is maintained by RAMAN-EDFA hybrid optical amplifier (HOA). Evaluation is carried out in terms of bit error rate (BER) and dispersion.
Citation
Chakresh Kumar, and Ghanendra Kumar, "Performance Evaluation of OADM for Super Dense Wavelength Division Multiplexing System," Progress In Electromagnetics Research Letters, Vol. 85, 131-135, 2019.
doi:10.2528/PIERL19022503
References

1. Liu, X., S. Chandrasekhar, and P. J. Winzer, "Digital signal processing techniques enabling multi-Tb/s superchannel transmission: An overview of recent advances in DSP-enabled superchannels," IEEE Signal Process. Mag., Vol. 31, No. 2, 16-24, Mar. 2014.
doi:10.1109/MSP.2013.2285934

2. Xia, T. J., S. Gringeri, and M. Tomizawa, "High-capacity optical transport networks," IEEE Commun. Mag., Vol. 50, No. 11, 170-178, Nov. 2012.
doi:10.1109/MCOM.2012.6353698

3. Sano, A., H. Masuda, E. Yoshida, T. Kobayashi, E. Yamada, Y. Miyamoto, F. Inuzuka, Y. Hibino, Y. Takatori, K. Hagimoto, T. Yamada, and Y. Sakamaki, "30 × 100-Gb/s all-optical OFDM transmission over 1300 km SMF with 10 ROADM nodes," Eur. Conf. Opt. Commun., Paper PD.1.7, Berlin, Germany, 2007.

4. Chen, Y., J. Li, C. Zhao, L. Zhu, F. Zhang, Y. He, and Z. Chen, "Experimental demonstration of ROADM functionality on an optical SCFDM superchannel," Photon. Technol. Lett., Vol. 24, No. 3, 215-217, 2012.
doi:10.1109/LPT.2011.2176327

5. Goldfarb, G., G. Li, and M. G. Taylor, "Orthogonal wavelength division multiplexing using coherent detection," Photon. Technol. Lett., Vol. 19, No. 24, 2015-2017, 2007.
doi:10.1109/LPT.2007.909895

6. Sano, A., E. Yamada, H. Masuda, E. Yamazaki, T. Kobayashi, E. Yoshida, Y. Miyamoto, R. Kudo, K. Ishihara, and Y. Takatori, "No-guard-interval coherent optical OFDM for 100Gb/s long-haul WDM transmission," J. Lightw. Technol., Vol. 27, No. 16, 3705-3713, Aug. 2009.
doi:10.1109/JLT.2009.2023369

7. Shieh, W. and C. Athaudage, "Coherent optical orthogonal frequency division multiplexing," Electron. Lett., Vol. 42, No. 10, 587-589, 2006.
doi:10.1049/el:20060561

8. Ellis, A. D. and F. C. G. Gunning, "Spectral density enhancement using coherent WDM," Photon. Technol. Lett., Vol. 15, No. 2, 504-506, 2005.
doi:10.1109/LPT.2004.839393

9. Poti, L., G. Meloni, G. Berrettini, F. Fresi, M. Secondini, T. Foggi, G. Colavolpe, E. Forestieri, A. D’Errico, F. Cavaliere, R. Sabella, and G. Prati, "Casting 1 Tb/s DP-QPSK communication into 200 GHz bandwidth," Eur. Conf. Exhib. Opt. Commun., Paper P4.19, Amsterdam, The Netherlands, 2012.

10. Palkopoulou, E., G. Bosco, A. Carena, D. Klonidis, P. Poggiolini, and I. Tomkos, "yquist-WDM-based flexible optical networks: Exploring physical layer design parameters," J. Lightw. Technol., Vol. 31, No. 14, 2332-2339, Jul. 2013.
doi:10.1109/JLT.2013.2265324

11. Bosco, G., V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, "On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QA subcarriers," J. Lightw. Technol., Vol. 29, No. 1, 53-61, Jan. 2011.
doi:10.1109/JLT.2010.2091254

12. Pincemin, E., M. Song, J. Karaki, A. Poudoullec, N. Nicolas, M. Van der Keur, Y. Jaouen, P. Gravey, M. Morvan, and G. Froc, "Multiband OFDM transmission with sub-band optical switching," Eur. Conf. Opt. Commun., Paper Th.2.A.1, London, UK, 2013.

13. Winzer, P. J., "An opto-electronic interferometer and its use in subcarrier add/drop multiplexing," J. Lightw. Technol., Vol. 31, No. 11, 1775-1782, Jun. 2013.
doi:10.1109/JLT.2013.2257687

14. Taylor, M. G., "Coherent optical channel substitution,", U.S. Patent 8 050 564, Nov. 1, 2011.

15. Zervas, G., et al. "Multi-granular optical cross-connect: Design, analysis, and demonstration," IEEE/OSA J. Opt. Commun. Netw., Vol. 1, No. 1, 69-84, Jun. 2009.
doi:10.1364/JOCN.1.000069

16. Furukawa, H., H. Harai, T. Miyazawa, S. Shinada, W. Kawasaki, and N. Wada, "Development of optical packet and circuit integrated ring network testbed," Opt. Exp., Vol. 19, No. 26, B242-B250, Dec. 2011.
doi:10.1364/OE.19.00B242

17. Chiaroni, D., et al. "Packet OADMs for the next generation of ring networks," Bell Labs Tech. J., Vol. 14, No. 4, 265-283, 2010.
doi:10.1002/bltj.20415

18. Yuang, M., et al. "HOPSMAN: An experimental testbed system for a 10-Gb/s optical packet-switched WDM metro ring network," IEEE Commun. Mag., Vol. 46, No. 7, 158-166, Jul. 2008.
doi:10.1109/MCOM.2008.4557060