1. Arshad, K., M. Lazar, S. Mahmood, Aman-ur-Rehman, and S. Poedts, "Kinetic study of electrostatic twisted waves instability in nonthermal dusty plasmas," Physics of Plasmas, Vol. 24, 033701, 2017.
doi:10.1063/1.4977446 Google Scholar
2. Arshad, K., M. Lazar, and S. Poedts, "Quasi-electrostatic twisted waves in Lorentzian dusty plasmas," Planetary and Space Science, Vol. 156, 139-146, 2018.
doi:10.1016/j.pss.2017.10.013 Google Scholar
3. El Gawhary, O. and S. Severini, "Lorentz beams and symmetry properties in paraxial optics," Journal of Optics A --- Pure and Applied Optics, Vol. 8, 409-414, 2006.
doi:10.1088/1464-4258/8/5/007 Google Scholar
4. Zhao, C. and Y. Cai, "Paraxial propagation of Lorentz and Lorentz-Gauss beams in uniaxial crystals orthogonal to the optical axis ," J. Mod. Optic, Vol. 57, 375-384, 2010.
doi:10.1080/09500341003640079 Google Scholar
5. Liu, D., Y. Wang, G. Wang, and H. Yin, "Influences of oceanic turbulence on Lorentz Gaussian beam ," Optik --- International Journal for Light and Electron Optics, Vol. 154, 738-747, 2018.
doi:10.1016/j.ijleo.2017.10.113 Google Scholar
6. Yu, H., L. Xiong, and B. Lue, "Nonparaxial Lorentz and Lorentz-Gauss beams," Optik, Vol. 121, 1455-1461, 2010.
doi:10.1016/j.ijleo.2009.02.005 Google Scholar
7. Zhou, G. Q. and X. X. Chu, "Average intensity and spreading of a Lorentz-Gauss beam in turbulent atmosphere," Opt. Express, Vol. 18, 726-731, 2010.
doi:10.1364/OE.18.000726 Google Scholar
8. Du, W., C. L. Zhao, and Y. J. Cai, "Propagation of Lorentz and Lorentz-Gauss beams through an apertured fractional Fourier transform optical system," Opt. Laser Eng., Vol. 49, 25-31, 2011.
doi:10.1016/j.optlaseng.2010.09.004 Google Scholar
9. Zhou, G. and R. Chen, "Wigner distribution function of Lorentz and Lorentz-Gauss beams through a paraxial ABCD optical system," Appl. Phys. B-Lasers O, Vol. 107, 183-193, 2012.
doi:10.1007/s00340-012-4889-9 Google Scholar
10. Liu, D., H. Yin, and G. Wang, "Nonparaxial propagation of a partially coherent Lorentz-Gauss beam," Optik --- International Journal for Light and Electron Optics, Vol. 155, 190-199, 2018.
doi:10.1016/j.ijleo.2017.11.013 Google Scholar
11. Liu, D., G.Wang, and Y.Wang, "Average intensity and coherence properties of a partially coherent Lorentz-Gauss beam propagating through oceanic turbulence," Optics & Laser Technology, Vol. 98, 309-317, 2018.
doi:10.1016/j.optlastec.2017.08.011 Google Scholar
12. Ni, Y. Z. and G. Q. Zhou, "Nonparaxial propagation of Lorentz-Gauss vortex beams in uniaxial crystals orthogonal to the optical axis," Appl. Phys. B-Lasers O, Vol. 108, 883-890, 2012.
doi:10.1007/s00340-012-5118-2 Google Scholar
13. Zhou, G. Q. and G. Y. Ru, "Angular momentum density of a linearly polarized Lorentz-Gauss vortex beam," Opt. Commun., Vol. 313, 157-169, 2014.
doi:10.1016/j.optcom.2013.10.010 Google Scholar
14. Zhou, G. Q., "Propagation property of a Lorentz-Gauss vortex beam in a strongly nonlocal nonlinear media," Opt. Commun., Vol. 330, 106-112, 2014.
doi:10.1016/j.optcom.2014.05.045 Google Scholar
15. Zhou, G. Q., Z. Y. Ji, and G. Y. Ru, "Orbital angular momentum density of a general Lorentz-Gauss vortex beam," Laser Phys., Vol. 26, 075002, 2016.
doi:10.1088/1054-660X/26/7/075002 Google Scholar
16. Liu, D., H. Yin, G. Wang, and Y. Wang, "Propagation of partially coherent Lorentz-Gauss vortex beam through oceanic turbulence," Appl Optics, Vol. 56, 8785-8792, 2017.
doi:10.1364/AO.56.008785 Google Scholar
17. Liu, D., H. Zhong, G. Wang, H. Yin, and Y. Wang, "Evolution properties of a partially coherent Lorentz-Gauss vortex beam in a uniaxial crystal," J. Mod. Optic, Vol. 66, 1-10, 2019.
doi:10.1080/09500340.2018.1508776 Google Scholar
18. Liu, X. Y. and D. M. Zhao, "The statistical properties of anisotropic electromagnetic beams passing through the biological tissues," Opt. Commun., Vol. 285, 4152-4156, 2012.
doi:10.1016/j.optcom.2012.06.033 Google Scholar
19. Luo, M. L., Q. Chen, L. M. Hua, and D. M. Zhao, "Propagation of stochastic electromagnetic vortex beams through the turbulent biological tissues," Phys. Lett. A, Vol. 378, 308-314, 2014.
doi:10.1016/j.physleta.2013.11.022 Google Scholar
20. Lu, X. Y., X. L. Zhu, K. L. Wang, C. L. Zhao, and Y. J. Cai, "Effects of biological tissues on the propagation properties of anomalous hollow beams," Optik, Vol. 127, 1842-1847, 2016.
doi:10.1016/j.ijleo.2015.11.039 Google Scholar
21. Liu, D., H. Zhong, and Y. Wang, "Intensity properties of anomalous hollow vortex beam propagating in biological tissues," Optik, Vol. 170, 61-69, 2018.
doi:10.1016/j.ijleo.2018.05.098 Google Scholar
22. Jeffrey, H. D. A., Handbook of Mathematical Formulas and Integrals, 4th Ed., Academic Press Inc., 2008.
23. Schmidt, P., "A method for the convolution of lineshapes which involve the Lorentz distribution," Journal of physics B, Vol. 9, 2331-2339, 1976.
doi:10.1088/0022-3700/9/13/018 Google Scholar
24. Schmitt, J. and G. Kumar, "Turbulent nature of refractive-index variations in biological tissue," Opt. Lett., Vol. 21, 1310-1312, 1996.
doi:10.1364/OL.21.001310 Google Scholar