Vol. 82
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-07-06
Design of a Wireless Power Transfer System to Power Wireless Sensors Remotely Using UHF
By
Progress In Electromagnetics Research M, Vol. 82, 175-182, 2019
Abstract
A wireless power transfer system is designed to power remotely placed wireless sensors using UHF band. For receiving purpose, a small and compact, bi-quad antenna isdesigned which has a fractional bandwidth of 6.89% (443.65 MHz-475.5 MHz). The receiver antenna is uni-directional and has the maximum gain of 9.7 dBi. The overall dimensions of the antenna including the reflective ground plane are 50 cm × 30 cm × 16 cm (0.767λ × 0.46λ × 0.172λ at 460 MHz). A General Mobile Radio Service (GMRS) radio license is obtained and a frequency of 462.55 MHz is used during the test measurement. The maximum achieved effective distance is 150 ft with 3.52 V, which is enough for powering most of the commercial sensors.
Citation
Sungkyun Lim Deon Lucien Joshua Haney Jinxi Chen Rakibul Islam Cameron Cato , "Design of a Wireless Power Transfer System to Power Wireless Sensors Remotely Using UHF," Progress In Electromagnetics Research M, Vol. 82, 175-182, 2019.
doi:10.2528/PIERM19041008
http://www.jpier.org/PIERM/pier.php?paper=19041008
References

1. Brown, W., "The history of power transmission by radio waves," IEEE Trans. Microwave Theory Tech., Vol. 32, No. 9, 1230-1242, 1984.
doi:10.1109/TMTT.1984.1132833

2. McSpadden, J. O., F. E. Little, M. B. Duke, and A. Ignative, "An in-space energy transmission experiment," Proc. 31st Intersociety Energy Conversion Eng. Conf. (IECEC), Vol. 1, 468-473, 2004.

3. Paing, T., A. Dolgov, J. Shin, J. Brannan, R. Zane, and Z. Popvic, "Wirelessly powered wireless sensor platform," European Microwave Conf., 241-244, 2007.

4. Kim, S., et al., "Ambient RF energy-harvesting technologies for self-sustainable standalone wireless sensor platforms," Proceedings of the IEEE, Vol. 102, No. 11, 1649-1666, Nov. 2014.
doi:10.1109/JPROC.2014.2357031

5. Vera, G. A., A. Georgiadis, A. Collado, and S. Via, "Design of a 2.45 GHz rectenna for electromagnetic (EM) energy scavenging," IEEE Radio and Wireless Symposium, 61-64, Jan. 2010.

6. Hagerty, J. A., F. B. Helmbrecht, W. H. McCalpin, W. R. Zane, and Z. B. Popovic, "Recycling ambient microwave energy with broad-band rectenna arrays," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 3, 1014-1023, 2004.
doi:10.1109/TMTT.2004.823585

7. Pinuela, M., P. Mitcheson, and S. Lucyszyn, "Ambient RF energy harvesting inurban and semi-urban environments," IEEE Trans. Microwave Theory Tech., Vol. 61, No. 7, 2715-2726, 2013.
doi:10.1109/TMTT.2013.2262687

8. Kim, Y.-J., H. S. Bhamra, J. Joseph, and P. P. Irazoqui, "An ultra-low-power RF energy-harvesting transceiver for multiple-node sensor application," IEEE Trans. Circuit and Systems, Vol. 62, 1028-1032, 2015.

9. Le, T., K. Mayaram, and T. Fiez, "Efficient far-field radio frequency energy harvesting for passively powered sensor networks," IEEE J. Solid-State Circuits, Vol. 43, 1287-1302, 2008.
doi:10.1109/JSSC.2008.920318

10. Fan, S., et al., "A 2.45-GHz rectifier-booster regulator with impedance matching converters for wireless energy harvesting," IEEE Trans. Microwave Theory Tech., 1-11, 2019.

11. Liu, X., P. Wang, P. C. Lou, F. Gao, and F. H. Choo, "Control of hybrid battery/ultra-capacitor energy storage forstand-alone photovoltaic system," IEEE Energy Conversion and Exposition, 336-341, 2010.

12. Tsukiji, T. and S. Tou, "On polygonal loop antennas," IEEE Trans. Antennas Propag., Vol. 28, 571-575, 1980.
doi:10.1109/TAP.1980.1142380

13. https://www.digikey.com/products/en?WT.z_se_ps=1&keywords=1N6263.

14. Pozar, D. M., Microwave Engineering, 4th Ed., Wiley, New York, 2011.

15. Kumar, S., S. De, and D. Mishra, "RF energy transfer channel models for sustainable IoT," IEEE Internet of Things Journal, Vol. 5, No. 4, 2817-2828, Aug. 2018.
doi:10.1109/JIOT.2018.2827936