1. Zhou, H., D. Hu, C. Yang, C. Chen, J. Ji, M. Chen, Y. Chen, Y. Yang, and Z. Mu, "Multi-band sensing for dielectric property of chemical using metamaterial integrated microfluidic sensor," Scientific Reports, Vol. 8, 14801, 2018.
doi:10.1038/s41598-018-32827-y Google Scholar
2. Salim, A. and S. Lim, "Review of recent metamaterials microfluidic sensors," Sensor, Vol. 18, 232, 2018.
doi:10.3390/s18010232 Google Scholar
3. Weina, L., S. Haoran, and L. Xu, "A microwave method for dielectric characterization measurement of small liquids using a metamaterial-based sensor," Sensor, Vol. 18, 1438, 2018. Google Scholar
4. Bakır, M., M. Karaaslan, E. Unal, F. Karadag, F. O. Alkurt, O. Altınta¸s, S. Dalgac, and C. Sabah, "Microfluidic and fuel adulteration sensing by using chiral metamaterial sensor," J. Electrochem. Soc., Vol. 165, 11, 2018. Google Scholar
5. Su, L., J. Mata-Contreras, P. Velez, and F. Martin, "A review of sensing strategies for microwave sensors based on metamaterial-inspired resonator: Dielectric characterization, displacement, and angular velocity measurements for health diagnosis, telecommunication, and space applications," Int. J. of Antennas and Propagation, 5619728, 2017. Google Scholar
6. Velez, P., L. Su, K. Grenier, J. Mata-Contreras, D. Dubuc, and F. Martin, "Microwave microfluidic sensor based on a microstrip splitter/combiner configuration and split ring resonator for dielectric characterization of liquids," IEEE Sensors Journal, Vol. 17, 20, 2017. Google Scholar
7. Bakir, M., "Electromagnetic-based microfluidic sensor applications," J. Electrochem. Soc., Vol. 164, B488-B494, 2017. Google Scholar
8. Shih, K., P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, and C. Lee, "Microfluidic metamaterial sensor: Selective trapping and remote sensing of microparticles," J. Appl. Phys., Vol. 121, 023102, 2017. Google Scholar
9. Saghati, A. P., J. S. Batra, J. Kameoka, and K. Entesari, "A metamaterial-inspired wideband microwave interferometry sensor for dielectric spectroscopy of liquid chemicals," IEEE Trans. Microw. Theory Tech., Vol. 65, 2558-2570, 2017. Google Scholar
10. Sadeqi, A. and S. Sonkusale, "Low-cost metamaterial-on-paper chemical sensor," Transducers Int. Conf. Solid-State Sens., Actuators Microsyst., Vol. 25, 1437-1440, 2017. Google Scholar
11. Awang, R. A., F. J. Tovar-Lopez, T. Baum, S. Sriram, and W. S. T. Rowe, "Meta-atom microfluidic sensor for measurement of dielectric properties of liquids," J. Appl. Phys., Vol. 121, 094506, 2017. Google Scholar
12. Salim, A. and S. Lim, "Complementary split-ring resonator-loaded microfluidic ethanol chemical sensor," Sensors, Vol. 16, 1802, 2016. Google Scholar
13. Kim, H. K., D. Lee, and S. A. Lim, "Fluidically tunable metasurface absorber for fexible large-scale wireless ethanol sensor applications," Sensors, Vol. 16, 1246, 2016. Google Scholar
14. Long, J. and B. Wang, "A metamaterial-inspired sensor for combined inductive-capacitive," Appl. Phys. Lett., Vol. 106, 074104, 2015. Google Scholar
15. Kim, H. K., M. Yoo, and S. Lim, "Novel ethanol chemical sensor using microfluidic metamaterial," Proceedings of the IEEE International Symposium on Antennas and Propagation & National Radio Science Meeting, 1358-1359, Vancouver, BC, Canada, Jul. 2015. Google Scholar
16. Byford, J. A., K. Y. Park, and P. Chahal, "Metamaterial inspired periodic structure used for microfluidic sensing," Proceedings of the Electronic Components Technology Conference, 1997-2002, San Diego, CA, USA, May 2015. Google Scholar
17. Rawat, V., S. Dhobale, and S. N. Kale, "Ultra-fast selective sensing of ethanol and petrol using microwave-range metamaterial complementary split-ring resonators," J. Appl. Phys., Vol. 116, 164106, 2014. Google Scholar
18. Ebrahimi, A., W. Withayachumnankul, S. Al-Sarawi, and D. Abbott, "High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization," IEEE Sensors Journal, Vol. 14, No. 5, 2014. Google Scholar
19. Abduljabar, A., D. J. Rowe, A. Porch, and D. A. Barrow, "Novel microwave microfluidic sensor using a microstrip split-ring resonator," IEEE Trans. Microw. Theory Tech., Vol. 62, 679-688, 2014. Google Scholar
20. Withayachumnankul, W., K. Jaruwongrungsee, A. Tuantranont, C. Fumeaux, and D. Abbott, "Metamaterial-based microfluidic sensor for dielectric characterization," Sensors and Actuators A: Physical, Vol. 189, 233-237, 2013. Google Scholar
21. Chretiennot, T., D. Dubuc, and K. Grenier, "A microwave and microfluidic planar resonator for efficient and accurate complex permittivity characterization of aqueous solutions," IEEE Trans. Microw. Theory Techn., Vol. 61, No. 2, 972-978, 2013. Google Scholar
22. Agarwal, S. and Y. K. Prajapati, "Multifunctional metamaterial surface for absorbing and sensing applications," Optics Communications, Vol. 439, No. 15, 304-307, 2019. Google Scholar
23. Agarwal, S., Y. K. Prajapati, and V. Mishra, "Thinned fibre bragg grating as a fuel adulteration sensor: Simulation and experimental study," Opto-Electronics Review, Vol. 23, No. 4, 231-238, 2015. Google Scholar
24. Afapour, Z. O. V., Y. A. H. Ajati, and M. O. H. Ajati, "Graphene-based mid-infrared biosensor," J. Opt. Soc. Am. B, Vol. 34, 2586-2592, 2017. Google Scholar
25. Geng, Z., X. Zhang, Z. Fan, X. Lv, and H. Chen, "A route to terahertz metamaterial biosensor integrated with microfluidics for liver cancer biomarker testing in early stage," Sci. Rep., Vol. 7, 1-11, 2017. Google Scholar
26. Sreekanth, K. V., Y. Alapan, M. El Kabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, "Extreme sensitivity biosensing platform based on hyperbolic metamaterials," Nat. Mater., Vol. 15, 621-627, 2016. Google Scholar
27. Aristov, A. I., M. Manousidaki, A. Danilov, K. Terzaki, C. Fotakis, M. Farsari, and A. V. Kabashin, "3D plasmonic crystal metamaterials for ultra-sensitive biosensing," Sci. Rep., Vol. 6, 1-8, 2016. Google Scholar
28. Chen, M., F. Fan, S. Shen, X. Wang, and S. Chang, "Terahertz ultrathin film thickness sensor below λ/90 based on metamaterial," Appl. Opt., Vol. 55, 6471-6474, 2016. Google Scholar
29. Lee, D.-K. K., J.-H. H. Kang, J.-S. S. Lee, H.-S. S. Kim, C. Kim, J. Hun Kim, T. Lee, J.-H. H. Son, Q.-H. H. Park, and M. Seo, "Highly sensitive and selective sugar detection by terahertz nano-antennas," Sci. Rep., Vol. 5, 1-7, 2015. Google Scholar
30. Wu, P. C., G. Sun, W. T. Chen, K. Y. Yang, Y. W. Huang, Y. H. Chen, H. L. Huang, W. L. Hsu, H. P. Chiang, and D. P. Tsai, "Vertical split-ring resonator based nanoplasmonic sensor," Appl. Phys. Lett., Vol. 105, 3898, 2014. Google Scholar
31. Torun, H., F. Cagri Top, G. Dundar, and A. D. Yalcinkaya, "An antenna-coupled split-ring resonator for biosensing," J. Appl. Phys., Vol. 116, 124701, 2014. Google Scholar
32. Lee, H. J., J. H. Lee, H. S.Moon, I. S. Jang, J. S. Choi, J. G. Yook, and H. Jung, "A planar split-ring resonator-based microwave biosensor for label-free detection of biomolecules," Sens. Actuators B Chem., Vol. 169, 26-31, 2012. Google Scholar
33. Chen, T., S. Li, and H. Sun, "Metamaterials application in sensing," Sensors, Vol. 12, 2742-2765, 2012. Google Scholar
34. Zijlstra, P., P. M. R. Paulo, and M. Orrit, "Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod," Nat. Nanotechnol., Vol. 7, 379-382, 2012. Google Scholar
35. Lee, H. J. and J. G. Yook, "Biosensing using split-ring resonators at microwave regime," Appl. Phys. Lett., Vol. 92, 10-13, 2008. Google Scholar
36. White, G. M., "The origins and the future of microfluidics," Nature, Vol. 442, 368-373, 2006. Google Scholar
37. Su, L., J. Naqui, J. Mata-Contreras, and F. Martın, "Modeling metamaterial transmission lines loaded with pairs of coupled split ring resonators," IEEE Antennas Wireless Propag. Lett., Vol. 14, 68-71, 2015. Google Scholar
38. Su, L., J. Naqui, J. Mata-Contreras, and F. Martin, "Modeling and applications of metamaterial transmission lines loaded with pairs of coupled complementary split ring resonators (CSRRs)," IEEE Antennas Wireless Propag. Lett., Vol. 15, 154-157, 2016. Google Scholar
39. Su, L., J. Naqui, J. Mata-Contreras, and F. Martın, "Splitter/combiner microstrip sections loaded with pairs of complementary split ring resonators (CSRRs): Modeling and optimization for differential sensing applications," IEEE Trans. Microw. Theory Techn., Vol. 64, No. 12, 4362-4370, Dec. 2016. Google Scholar
40. Su, L., J. Mata-Contreras, and F. Martın, "Configurations of splitter/combiner microstrip sections loaded with stepped impedance resonators (SIRs) for sensing applications," Sensors, Vol. 16, No. 12, 2195, 2016. Google Scholar
41. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Techn., Vol. 47, No. 11, 2075-2084, 1999. Google Scholar
42. Sonsilphong, A. and N. Wongkasem, "Three-dimensional artificial double helices with high negative refractive index," Journal of Optics, Vol. 14, 105103, 2012. Google Scholar
43. Panpradit, W., A. Sonsilphong, C. Soemphol, and N. Wongkasem, "High negative refractive index chiral metamaterials," Journal of Optics, Vol. 14, 075101, 2012. Google Scholar
44. Matra, K. and N. Wongkasem, "Left-handed chiral isotropic metamaterials: Analysis and detailed numerical study," Journal of Optics A: Pure and Applied Optics, Artificial Chiral Materials, Vol. 11, 074011, 2009. Google Scholar
45. Sonsilphong, A. and N. Wongkasem, "Mid-infrared circular polarization switching in helical metamaterials," Journal of Optics, Vol. 18, 115102, 2016. Google Scholar
46. Sonsilphong, A., P. Gutruf, W. Withayachumnankul, D. Abbott, M. Bhaskaran, S. Sriram, and N. Wongkasem, "Flexible bi-layer terahertz chiral metamaterials," Journal of Optics, Vol. 17, 085101, 2015. Google Scholar
47. Fang, L., M. Wei, N. Wongkasem, H. Jaradat, A. Mokhlis, J. Shen, A. Akyurtlu, K. Marx, C. Barry, and J. Mead, "Tin assisted transfer of electroplated metal nanostructures and its application in flexible chiral metamaterials," Microelectronic Engineering, Vol. 107, 42-49, 2013. Google Scholar
48. Soemphol, C., S. F. Kitchin, M. A. Fiddy, and N. Wongkasem, "Electromagnetic responses of curved fishnet structures: Near-zero refractive index with lower loss," Journal of Optics, Vol. 18, 025102, 2016. Google Scholar
49. Soemphol, C., A. Sonsilphong, and N. Wongkasem, "Metamaterials with near-zero refractive index produced using fishnet structures," Journal of Optics, Vol. 16, 015104, 2013. Google Scholar
50. Mohammadia, A., A. Ismaila, M. A. Mahdia, R. S. A. R. Abdullaha, M. M. Isab, and A. R. Sadrolhosseinic, "Carbon-nanotube-based FR-4 patch antenna as a bio-material sensor," Procedia Engineering, Vol. 41, 724-728, 2012. Google Scholar
51. Bao, J. Z., M. L. Swicord, and C. C. Davis, "Microwave dielectric characterization of binary mixtures of water, methanol, and ethanol," J. Chem. Phys., Vol. 104, 4441, 1996. Google Scholar
52. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773, 1996. Google Scholar
53. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "A composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000. Google Scholar
54. Katsarakis, N., T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Electric coupling to the magnetic resonance of split ring resonators," Appl. Phys. Lett., Vol. 84, No. 15, 2943-2945, 2004. Google Scholar
55. Rosa, E. B., Bulletin of the Bureau of Standards, Vol. 4, 301-344, Washington Government Printing Office, 1908.
56. Vendik, O. G., S. P. Zubko, and M. A. Nikol’skii, "Modeling and calculation of the capacitance of a planar capacitor containing a ferroelectric thin film," Tech. Phys., Vol. 44, No. 4, 349-355, 1999. Google Scholar
57. Arritt, B. J., D. R. Smith, and T. Khraishi, "Equivalent circuit analysis of metamaterial strain-dependent effective medium parameters," J. of Applied Science, Vol. 109, 073512, 2011. Google Scholar
58. Mackay, T. G., "Plane waves with negative phase velocity in isotropic chiral mediums," Microw. Opt. Tech. Lett., Vol. 45, No. 2, 120-121, 2005. Google Scholar
59. Mackay, T. G. and A. Lakhtakia, "Simultaneous negative and positive phase-velocity propagation in an isotropic chiral medium," Microw. Opt. Tech. Lett., Vol. 49, No. 6, 1245-1246, 2007. Google Scholar
60. Wongkasem, N. and A. Akyurtlu, "Light splitting effects in chiral metamaterials," Journal of Optics, Vol. 12, 035101, 2010. Google Scholar