Vol. 85
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-07-15
Design of a Dual-Band Bandpass Filter Using a Cross Ring Resonator
By
Progress In Electromagnetics Research Letters, Vol. 85, 137-144, 2019
Abstract
In this paper, a new dual-band bandpass filter (BPF) using a cross ring resonator is designed. The cross ring resonator is modified from a typical dual-mode ring resonator and has four parallel coupling gaps (g). The resonant modes of the proposed cross ring resonator is investigated first. It is found that the first mode and the second mode can be tuned individually. The filter performances are simulated by using full-wave simulator IE3D. A filter example having two passbands operated at 2.4/5.2 GHz of wireless local area network (WLAN) applications is described to verify the design concept. The fabricated filter has measured characteristics including average insertion losses of 2.0 dB and 1.8 dB and return losses larger than 22 dB and 10 dB for 2.4/5.2 GHz, respectively. Two transmission zeros with high frequency selectivity of 40 dB and 42 dB are obtained near the first passband at 2.2 GHz and 2.7 GHz, respectively. This design is very simple as compared to other design methods, and the measured results prove the design concept of the proposed structure.
Citation
Fang-Li Zhao, Min-Hang Weng, Chin-Yi Tsai, Cheng-Xun Lin, and Ru-Yuan Yang, "Design of a Dual-Band Bandpass Filter Using a Cross Ring Resonator," Progress In Electromagnetics Research Letters, Vol. 85, 137-144, 2019.
doi:10.2528/PIERL19041507
References

1. Hong, J. S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Chap. 7, 224-226, Chap. 10, 315-324, and Chap. 11, 404-419, 2001.
doi:10.1002/0471221619

2. Weng, M.-H., S.-K. Liu, H.-W. Wu, and C.-H. Hung, "A dual-band bandpass filter having wide and narrow bands simultaneously using multilayered stepped impedance resonators," Progress In Electromagnetics Research Letters, Vol. 13, 139-147, 2010.
doi:10.2528/PIERL10022401

3. Chang, C. H., H. S. Wu, J. Yang, and C. K. C. Tzuang, "Coalesced single-input single-output dual-band filter," IEEE MTT-S International, Vol. 1, 511-514, Jun. 2003.

4. Chang, S. F., Y. H. Jeng, and J. L. Chen, "Dual-band step-impedance bandpass filter for multimode wireless LANs," Electronics Letters, Vol. 50, No. 7, 38-39, Jul. 2004.

5. Weng, M. H., C. Y. Hung, and W. N. Chen, "Dual-mode bandpass filters using triangle ring resonators with coupling stubs," Microw. & Opt. Tech. Lett., Vol. 43, No. 6, 512-515, Dec. 2004.
doi:10.1002/mop.20519

6. Huang, T.-H., H.-J. Chen, C.-S. Chang, L.-S. Chena, Y.-H. Wang, and M.-P. Houng, "A novel compact ring dual-mode filter with adjustable second-passband for dual-band applications," IEEE Microw. Wireless Compon. Lett., Vol. 16, No. 6, 360-362, Jun. 2006.
doi:10.1109/LMWC.2006.875607

7. Weng, M. H., C. Y. Hung, and H. W. Wu, "A novel dual-band bandpass filter using dual-mode resonators," IEICE Electric Lett., Vol. E88-C, No. 1, 146-148, Jan. 2005.
doi:10.1093/ietele/E88-C.1.146

8. Chen, J.-X., T. Y. Yum, J.-L. Li, and Q. Xue, "Dual-mode dual-band bandpass filter using stacked-loop structure," IEEE Microw. Wirel. Compon. Lett., Vol. 16, No. 9, 502-504, Sep. 2006.
doi:10.1109/LMWC.2006.880705

9. Zhang, X. Y. and Q. Xue, "Novel dual-mode dual-band filters using coplanar-waveguide-fed ring resonators," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 10, 2183-2190, Oct. 2007.
doi:10.1109/TMTT.2007.906501

10. Liu, H., B. Ren, X. Guan, J. Lei, and S. Li, "Compact dual-band bandpass filter using quadruple-mode square ring loaded resonator (SRLR)," IEEE Microw. Wireless Compon. Lett., Vol. 23, No. 4, 181-183, Apr. 2013.
doi:10.1109/LMWC.2013.2247749

11. Ren, B., H. Liu, Z. Mai, M. Ohira, P. Wen, X. L. Wang, and X. Guan, "Compact dual-band differential bandpass filter using quadruple-mode stepped-impedance square ring loaded resonators," IEEE Access, Vol. 6, No. 9, 21850-21858, Sep. 2018.
doi:10.1109/ACCESS.2018.2829025

12. IE3D Simulator, Zeland Software, Inc., , 2002.