Vol. 85
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-06-19
Design of a Wideband Circularly Polarized Cross-Dipole with Wide Axial-Ratio Beamwidth
By
Progress In Electromagnetics Research Letters, Vol. 85, 51-57, 2019
Abstract
A novel wideband circularly polarized (CP) cross-dipole with wide 3 dB axial-ratio (AR) beamwidth is presented. To generate CP radiation, the cross-dipole is fed by a Wilkinson power divider which can provide 90° phase difference. The gain beamwidth and 3 dB AR beamwidth can be widened by the bent arm structures of cross-dipole and four vertical parasitic elements. As a result, the 3 dB AR beamwidth and gain beamwidth of the proposed antenna can achieve over 210° and 105°, respectively. It is observed that the impedance bandwidth (|S11| ≤ -10 dB) of the proposed antenna is 1.2~2.0 GHz, and the AR bandwidth (AR ≤ 3 dB) is 1.28~1.76 GHz. The simulated and measured results are in good agreement, which shows that the proposed antenna is a good candidate for the application of satellite communications.
Citation
Li-Xin Cao, Fu-Shun Zhang, Yi Zhao, and Deng-Hui Li, "Design of a Wideband Circularly Polarized Cross-Dipole with Wide Axial-Ratio Beamwidth," Progress In Electromagnetics Research Letters, Vol. 85, 51-57, 2019.
doi:10.2528/PIERL19042902
References

1. He, S. Y. and J. Deng, "Compact and single-feed circularly polarized microstrip antenna with wide beamwidth and axial-ratio beamwidth," Electron. Lett., Vol. 53, No. 15, 1013-1015, Jul. 2017.
doi:10.1049/el.2017.1030

2. Nasimuddin, X. Q. and Z. N. Chen, "A compact circularly polarized slotted patch antenna for GNSS applications," IEEE Trans. Antennas Propag., Vol. 62, No. 12, 6506-6509, Dec. 2014.
doi:10.1109/TAP.2014.2360218

3. Bai, X., S.-W. Qu, S. Yang, J. Hu, and Z.-P. Nie, "Millimeter-wave circularly polarized tapered-elliptical cavity antenna with wide axialratio beamwidth," IEEE Trans. Antennas Propag., Vol. 64, No. 2, 811-814, Feb. 2016.
doi:10.1109/TAP.2015.2507171

4. Chen, X., L. Yang, J.-Y. Zhao, and G. Fu, "High-efficiency compact circularly polarized microstrip antenna with wide beamwidth for airborne communication," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1518-1521, 2016.
doi:10.1109/LAWP.2016.2517068

5. Luo, Y., Q. X. Chu, and L. Zhu, "A low-profile wide-beamwidth circularly-polarized antenna via two pairs of parallel dipoles in a square contour," IEEE Trans. Antennas Propag., Vol. 63, No. 3, 931-936, Mar. 2015.
doi:10.1109/TAP.2014.2387438

6. Luo, Y., Q. X. Chu, and L. Zhu, "A miniaturized wide-beamwidth circularly polarized planar antenna via two pairs of folded dipoles in a square contour," IEEE Trans. Antennas Propag., Vol. 63, No. 8, 3753-3759, Aug. 2015.
doi:10.1109/TAP.2015.2438334

7. Zhang, X., L. Zhu, and N.-W. Liu, "Pin-loaded circularly-polarized patch antennas with wide 3-dB axial ratio beamwidth," IEEE Trans. Antennas Propag., Vol. 65, No. 2, 521-528, Feb. 2017.
doi:10.1109/TAP.2016.2632728

8. Chen, J., M. Wang, and L. Hu, "Broad beamwidth circularly polarized microstrip antenna for CNSS band application," Asia-Pacific Microw. Conf., IEEE, 2015.

9. Ta, S. X., H, Choo, and I. Park, "Multi-band, wide-beam, circularly polarized, crossed, asymmetrically barbed dipole antennas for GPS applications," IEEE Trans. Antennas Propag., Vol. 61, No. 11, 5771-5775, Nov. 2015.
doi:10.1109/TAP.2013.2277915

10. Luo, Y., Q. X. Chu, and J. Bornemann, "Enhancing cross-polarization discrimination or axial ratio beamwidth of diagonally dual or circularly polarized base station antennas by using vertical parasitic elements," Microw. Antennas Propag., Vol. 11, No. 9, 1190-1196, Jan. 2017.
doi:10.1049/iet-map.2016.0928

11. Ta, S. X. and I. Park, "Crossed dipole loaded with magneto-electric dipole for wideband and wide-beam circularly polarized radiation," IEEE Antennas Wireless Propag. Lett., Vol. 14, 358-361, 2015.
doi:10.1109/LAWP.2014.2363944

12. Sun, Y.-X., K. W. Leung, and K. Lu, "Broadbeam cross-dipole antenna for GPS applications," IEEE Trans. Antennas Propag, Vol. 65, No. 10, 5605-5610, Oct. 2017.
doi:10.1109/TAP.2017.2742585