1. Rozanov, K. N., "Ultimate thickness to bandwidth ratio of radar absorbers," IEEE Trans. Antennas Propag., Vol. 48, 1230-1234, 2000.
doi:10.1109/8.884491 Google Scholar
2. Han, Y., W. Che, and Y. Chang, "Investigation of thin and broadband capacitive surface-based absorber by the impedance analysis method," IEEE Trans. Electromag. Comp., Vol. 57, No. 1, 22-26, Feb. 2015.
doi:10.1109/TEMC.2014.2358686 Google Scholar
3. Han, Y. and W. Che, "Low-profile broadband absorbers based on capacitive surfaces," Antenna Wireless Propag. Lett., 2016. Google Scholar
4. Li, M., S. Q. Xiao, Y.-Y. Bai, and B.-Z. Wang, "An ultrathin and broadband radar absorber using resistive FSS," Antenna Wireless Propag. Lett., Vol. 11, 748-751, 2012. Google Scholar
5. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Physical Review Lett., Vol. 100, No. 20, 207402(1-4), 2008.
doi:10.1103/PhysRevLett.100.207402 Google Scholar
6. Liu, Y., S. Gu, C. Luo, and X. Zhao, "Ultra-thin broadband metamaterial absorber," Applied Physics A, Vol. 108, No. 1, 19-24, 2012.
doi:10.1007/s00339-012-6936-0 Google Scholar
7. Sun, J., L. Liu, G. Dong, and J. Zhou, "An extremely broad band metamaterial absorber based on destructive interference," Optics Express, Vol. 19, No. 22, 21155-21162, 2011.
doi:10.1364/OE.19.021155 Google Scholar
8. Chen, J., Z. Hu, G. Wang, X. Huang, S. Wang, X. Hu, and M. Liu, "High-impedance surface-based broadband absorbers with interference theory," IEEE Trans. Antennas Propag., Vol. 63, No. 10, 4367-4374, 2015.
doi:10.1109/TAP.2015.2459138 Google Scholar
9. Ferguson, B. and X. C. Zhang, "Materials for terahertz science and technology," Nature Materials, Vol. 1, No. 1, 26-33, 2002.
doi:10.1038/nmat708 Google Scholar
10. Geim, A. K., "Graphene: status and prospects," Science, Vol. 324, No. 5934, 1530-1534, 2009.
doi:10.1126/science.1158877 Google Scholar
11. Bao, Q. and K. P. Loh, "Graphene photonics, plasmonics, and broadband optoelectronic devices," ACS Nano, Vol. 6, No. 5, 3677-3694, 2012.
doi:10.1021/nn300989g Google Scholar
12. Fardoost, A., F. G. Vanani, and R. Safian, "Design of a multilayer graphene-based ultrawideband terahertz absorber," IEEE Trans. Nanotech., Vol. 16, No. 1, 68-74, 2017. Google Scholar
13. Xu, B. Z., C. Q. Gu, Z. Li, and Z. Y. Niu, "A novel structure for tunable terahertz absorber based on graphene," Optics Express, Vol. 21, No. 20, 23803-23811, 2013.
doi:10.1364/OE.21.023803 Google Scholar
14. Pu, M., P. Chen, Y. Wang, Z. Zhao, C. Wang, C. Huang, C. Hu, and X. Luo, "Strong enhancement of light absorption and highly directive thermal emission in graphene," Optics Express, Vol. 21, No. 10, 11618-11627, 2013.
doi:10.1364/OE.21.011618 Google Scholar
15. Yudistira, H. T., "Tailoring multiple reflections by using graphene as background for tunable terahertz metamaterial absorber," Materials Research Express, Vol. 6, No. 7, 075804(1-11), 2019.
doi:10.1088/2053-1591/ab15bd Google Scholar
16. Amin, M., M. Farhat, and H. Bac, "An ultra-broadband multilayered graphene absorber," Optics Express, Vol. 21, No. 24, 29938-29948, 2013.
doi:10.1364/OE.21.029938 Google Scholar
17. Yudistira, H. T., L. Y. Ginting, and K. Kananda, "High absorbance performance of symmetrical split ring resonator (SRR) terahertz metamaterial based on paper as spacer," Materials Research Express, Vol. 6, No. 2, 025804(1-9), 2018.
doi:10.1088/2053-1591/aaf27e Google Scholar