Vol. 87
Latest Volume
All Volumes
PIERL 123 [2024] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-10-08
An Angular Stabilized Frequency Selective Surface by Using Capacitance Layers Structure
By
Progress In Electromagnetics Research Letters, Vol. 87, 97-103, 2019
Abstract
A band-pass frequency selective surface (FSS) structure using capacitance layers is proposed to improve the performance of angular stability. It consists of band-pass FSSs, supporting dielectrics, and capacitance layers out of band-pass FSS. The supporting dielectrics and capacitance layers work as a transmission line and capacitance impedance matcher. Through the impedance matcher, the bandwidth is stabilized, and insertion loss at passband is reduced from -0.76 dB to -0.39 dB for incident angles up to 60°. The equivalent circuit of the proposed structure is presented, and the Smith chart is given to explain the mechanism of the capacitance layers. Finally, a prototype is manufactured and measured. A relatively good agreement is obtained between simulations and measurements. Therefore, the proposed structure can be an effective solution to improve the angular stability performance of band-pass FSS design.
Citation
Meng Sun, Shaowei Bie, Ling Miao, Qian Chen, and Jianjun Jiang, "An Angular Stabilized Frequency Selective Surface by Using Capacitance Layers Structure," Progress In Electromagnetics Research Letters, Vol. 87, 97-103, 2019.
doi:10.2528/PIERL19051702
References

1. Zhao, P., Z. Zong, W. Wu, B. Li, and D. Fang, "Miniaturized-element bandpass FSS by loading capacitive structures," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 5, 3539-3544, May 2019.
doi:10.1109/TAP.2019.2900408

2. Li, D., Z. Shen, and E. P. Li, "Spurious-free dual-band bandpass frequency-selective surfaces with large band ratio," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 2, 1065-1072, Feb. 2019.
doi:10.1109/TAP.2018.2882601

3. Liu, H. L., K. L. Ford, and R. J. Langley, "Design methodology for a miniaturized frequency selective surface using lumped reactive components," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 9, 2732-2738, Sep. 2009.
doi:10.1109/TAP.2009.2027174

4. Sarabandi, K. and N. Behdad, "A frequency selective surface with miniaturized elements," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 5, 1239-1245, May 2007.
doi:10.1109/TAP.2007.895567

5. Li, T. W., D. Li, and E. P. Li, "A novel FSS structure with high selectivity and excellent angular stability for 5G communication radome," 2017 10th Global Symposium on Millimeter-Waves, 50-52, Hong Kong, 2017.

6. Wang, H., L. Zheng, M. Yan, J. Wang, S. Qu, and R. Luo, "Design and analysis of miniaturized low profile and second-order multi-band polarization selective surface for multipath communication application," IEEE Access, Vol. 7, 13455-13467, 2019.
doi:10.1109/ACCESS.2019.2894013

7. Liu, X., Q. Wang, W. Zhang, M. Jin, and M. Bai, "On the improvement of angular stability of the 2nd-order miniaturized FSS structure," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 826-829, 2016.
doi:10.1109/LAWP.2015.2476384

8. Liang, E. and T. K. Wu, "Novel wideband frequency selective surface filters with fractal elements," Microwave Journal, Vol. 60, 102-110, Nov. 2017.

9. Parker, E. A., A. N. A. El Sheikh, C. De, and A. C. Lima, "Convoluted frequency-selective array elements derived from linear and crossed dipoles," IEE Proc. H, Vol. 140, No. 5, 378-380, 1993.

10. Yan, M., S. Qu, H. Ma, et al. "Convoluted element frequency selective surface with miniaturization and wideband response," 2016 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 1-3, Chengdu, 2016.

11. Omar, A. A. and Z. Shen, "Thin bandstop frequency-selective structures based on loop resonator," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 7, 2298-2309, Jul. 2017.
doi:10.1109/TMTT.2017.2651812

12. Munk, B., Frequency Selective Surfaces: Theory and Design, Wiley, New York, NY, USA, 2000.
doi:10.1002/0471723770