Vol. 85
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-09-09
Improvement of Resolution of Liquid Refractive Index Measurement Using Metallic Grating
By
Progress In Electromagnetics Research M, Vol. 85, 29-38, 2019
Abstract
The excitation of surface plasmon on a metallic grating can be observed by varying the polar angle, accompanied by the absorption of incident light. The absorption occurs at a resonance angle which is sensitive to the refractive index of the liquid coated on the surface of the grating. As a result, an application in index sensing is developed. However, the sensitivity by varying the polar angle is almost at the same level as a conventional prism couple-based sensor through angular detection. In our new setup, we propose two methods to improve the sensitivity to refractive index change using an index sensor. Our first method is a slight modification of the conventional setup by varying the azimuth angle instead of the polar angle. Absorption of the incident is also observed while scanning the azimuth angle. The second method is to utilize phase detection to realize high resolution in finding the refractive index of liquids. In the phase detection, a good linearity is observed in the experimental results, with a resolution 10 times higher than that of a conventional setup.
Citation
Taikei Suyama Zhaoxia Qian Fenghui Shi Hiroki Enomoto Akira Matsushima , "Improvement of Resolution of Liquid Refractive Index Measurement Using Metallic Grating," Progress In Electromagnetics Research M, Vol. 85, 29-38, 2019.
doi:10.2528/PIERM19060304
http://www.jpier.org/PIERM/pier.php?paper=19060304
References

1. Nevier, M., "The homogenous problem," Electromagnetic Theory of Gratings, 123-157, 1980.
doi:10.1007/978-3-642-81500-3_5

2. Raeter, H., "Surface plasmon and roughness," Surface Polaritons, 331-403, 1982.

3. Barnes, W. L., T. W. Preist, S. C. Kitson, J. R. Sambles, N. P. K. Cotter, and D. J. Nash, "Photonic gaps in the dispersion of surface plasmons on gratings," Phys. Rev. B, Vol. 51, 11164-11167, 1995.
doi:10.1103/PhysRevB.51.11164

4. Liu, L., L. Ran, H. Guo, X. Chen, and Z. Li, "Broadband plasmonic circuitry enabled by channel domino spoof plasmons," Progress In Electromagnetics Research, Vol. 164, 109-118, 2019.
doi:10.2528/PIER18120502

5. Gifford, J. W. and T. M. Lowry, "Some refractive indices of benzene and cyclohexane," Proc. of the Royal Society of London, Series A, Vol. 104, No. 726, 430-437, 1923.

6. Thormahlen, I., J. Straub, and U. Grigull, "Refractive index of water and its dependence of wavelength, temperature, and density," J. Phys. Chem. Ref. Data, Vol. 14, No. 4, 1985.
doi:10.1063/1.555743

7. Cheng, X. and B. Guan, "Optical biosensing and bioimaging with porous silicon and silicon quantum dots (Invited Review)," Progress In Electromagnetics Research, Vol. 160, 103-121, 2017.
doi:10.2528/PIER17120504

8. He, S. and H. Dong, "Simultaneous estimation of the refractive index and thickness of marine oil slick from the degree of linear polarization of the sun-glint reflection," Progress In Electromagnetics Research, Vol. 163, 133-142, 2018.
doi:10.2528/PIER18092601

9. Rossi, S., E. Gazzola, P. Capaldo, G. Borile, and F. Romanato, "Grating-coupled surface plasmon resonance (GC-SPR) optimization for phase-interrogation biosensing in a microfluidic chamber," Sensors (Basel), Vol. 18, No. 5, 1621, 2018.
doi:10.3390/s18051621

10. Lu, H., Y. C. Fan, S. Q. Dai, D. Mao, F. J. Xiao, P. Li, and J. L. Zhao, "Coupling-induced spectral splitting for plasmonic sensing with ultra-high figure of merit," Chinese Physics B, Vol. 27, 117302, 2018.
doi:10.1088/1674-1056/27/11/117302

11. Lu, H., S. Dai, Z. Yue, Y. Fan, H. Cheng, J. Di, D. Mao, E. Li, T. Mei, and J. Zhao, "Sb2Te3 topological insulator: Surface plasmon resonance and application in refractive index monitoring," Nanoscale, Vol. 11, 4759-4766, 2019.
doi:10.1039/C8NR09227C

12. Okuno, Y., T. Suyama, and T. Matsuda, "Plasmon resonance-absorption in a dielectric coated metal grating," IEICE Trans. Electron., Vol. J88-C, No. 7, 582584, 2005 (in Japanese).

13. Okuno, Y., T. Suyama, R. Hu, S. He, and T. Matsuda, "Excitation of surface plasmons on a metal grating and its application to an index sensor," IEICE Trans. Electron., Vol. E90-C, No. 7, 1507-1514, 2007.
doi:10.1093/ietele/e90-c.7.1507

14. Homola, J., S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: Review," Sensors and Actuators B, Vol. 54, 3-15, 1999.
doi:10.1016/S0925-4005(98)00321-9

15. Homola, J., I. Koudela, and S. Yee, "Surface plasmon resonance sensors based on diffraction gratings and prism couplers: Sensitivity comparison," Sensors and Actuators B, Vol. 54, 16-24, 1999.
doi:10.1016/S0925-4005(98)00322-0

16. Bryan-Brown, G. P., S. J. Elston, and J. R. Sambles, "Coupled surface plasmons on silver coated gratings," Opt. Commun., Vol. 82, 1-5, 1991.
doi:10.1016/0030-4018(91)90180-L

17. Matsuda, T., D. Zhou, and Y. Okuno, "Numerical analysis of plasmon resonance absorption in bisinusoidal metal gratings," Journal of the Optical Society of America A, Vol. 19, No. 4, 695-701, 2002.
doi:10.1364/JOSAA.19.000695

18. Okuno, Y. and T. Suyama, "Numerical analysis of surface plasmons excited on a thin metal grating," Journal of Zhejiang University SCIENCE A, Vol. 7, No. 1, 55-70, 2006.
doi:10.1631/jzus.2006.A0055

19. Bryan-Brown, G. P., J. R. Sambles, and M. C. Hutley, "Polarization conversion through the excitation of surface plasmons on a metallic grating," J. Modern Optics, Vol. 37, No. 7, 1227-1232, 1990.
doi:10.1080/09500349014551301

20. Matsuda, T., D. Zhou, and Y. Okuno, "Numerical analysis of TE-TM mode conversion in a metal grating placed in conical mounting," IEICE Trans. Electron., Vol. J82-C-I, No. 2, 42-49, 1999.

21. Hass, G. and L. Hadley, "Optical properties of metals," American Institute of Physics Handbook, 6-107, 1963.

22. Yasuura, K. and T. Itakura, "Approximation method for wave functions (I), (II), and (III)," Kyushu Univ. Tech. Rep., Vol. 39, No. 1, 51-56, 1966.

23. Yasuura, K., "A view of numerical methods in diffraction problems," Progress in Radio Science, 257-270, 1971.

24. Ikuno, H. and K. Yasuura, "Improved point-matching method with application to scattering from a periodic surface," IEEE Trams. Antennas & Propag., Vol. 21, 657-662, 1973.
doi:10.1109/TAP.1973.1140592

25. Lawson, C. L. and R. J. Hanson, Solving Least-Squares Problems, Prentice-Hall, Englewood Cliffs, NJ, 1974.

26. Nelson, S. G., K. S. Johnston, and S. S. Yee, "High sensitivity surface plasmon resonance sensor based on phase detection," Sensors and Actuators B, Vol. 35, No. 1-3, 187-191, 1996.
doi:10.1016/S0925-4005(97)80052-4

27. Law, W. C., P. Markowicz, K. T. Yong, I. Roy, A. Baev, S. Patskovsky, A. V. Kabashin, H. P. Ho, and P. N. Prasad, "Wide dynamic range phase-sensitive surface plasmon resonance biosensor based on measuring the modulation harmonics," Biosens. Bioelectron, Vol. 23, No. 5, 627-632, 2007.
doi:10.1016/j.bios.2007.07.015

28. Luo, Z., T. Suyama, X. Xu, and Y. Okuno, "A grating-based plasmon biosensor with high resolution," Progress In Electromagnetics Research, Vol. 118, 527-539, 2011.
doi:10.2528/PIER11060103

29. Budde, W., "Photoelectric analysis of polarized light," Opt., Vol. 1, 201-205, April 1962.

30. Horowitz, P. and W. Hill, The Art of Electronics, 641-646, Cambridge University Press, Cambridge, 1989.

31. Matsuda, T. and S. Hayashi, "Polarization of diffracted wave form periodic structures in resonance region," IEEJ, Vol. EMT-06-106, 115-119, 2006.

32. Lin, B. Q., J. Guo, Y. Wang, Z. Wang, B. Huang, and X. Liu, "A wide-angle and wide-band circular polarizer using a BI-Layer metasurface," Progress In Electromagnetics Research, Vol. 161, 125-133, 2018.
doi:10.2528/PIER18010922