1. Chen, L. F., C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics: Measurement and Materials Characterization, John Wiley & Sons, Ltd, 2004.
doi:10.1002/0470020466
2. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Transactions on Instrumentation and Measurement, Vol. 19, 377-382, 1970.
doi:10.1109/TIM.1970.4313932 Google Scholar
3. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proceedings of the IEEE, Vol. 62, 33-36, 1974.
doi:10.1109/PROC.1974.9382 Google Scholar
4. Kim, S. and J. R. Guerrieri, "Low-loss complex permittivity and permeability determination in transmission/reflection measurements with time-domain smoothing," Progress In Electromagnetics Research M, Vol. 44, 69-79, 2015.
doi:10.2528/PIERM15073010 Google Scholar
5. Hasar, U. C., J. J. Barroso, C. Sabah, and Y. Kaya, "Resolving phase ambiguity in the inverse problem of reflection-only measurement methods," Progress In Electromagnetics Research, Vol. 129, 405-420, 2012.
doi:10.2528/PIER12052311 Google Scholar
6. Kim, S. and J. Baker-Jarvis, "An approximate approach to determining the permittivity and permeability near λ/2 resonances in transmission/reflection measurements," Progress In Electromagnetics Research B, Vol. 58, 95-109, 2014.
doi:10.2528/PIERB13121308 Google Scholar
7. Hasar, U. C., "Self-calibrating transmission-reflection technique for constitutive parameters retrieval of materials," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, 1081-1089, 2018.
doi:10.1109/TMTT.2017.2756964 Google Scholar
8. Hasar, U. C., "Thickness-invariant complex permittivity retrieval from calibration-independent measurements," IEEE Microwave and Wireless Components Letters, Vol. 27, 201-203, 2017.
doi:10.1109/LMWC.2016.2647000 Google Scholar
9. Baker-Jarvis, J., E. J. Vanzura, and W. A. Kissick, "Improved technique for determining complex permittivity with the transmission/reflection method," IEEE Transactions on Microwave Theory and Techniques, Vol. 38, 1096-1103, 1990.
doi:10.1109/22.57336 Google Scholar
10. Kato, Y., M. Horibe, M. Ameya, S. Kurokawa, and Y. Shimada, "New uncertainty analysis for permittivity measurements using the transmission/reflection method," IEEE Transactions on Instrumentation and Measurement, Vol. 64, 1748-1753, 2015.
doi:10.1109/TIM.2015.2401231 Google Scholar
11. Hasar, U. C., Y. Kaya, J. J. Barroso, and M. Ertugrul, "Determination of reference-plane invariant, thickness-independent, and broadband constitutive parameters of thin materials," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, 2313-2321, 2015.
doi:10.1109/TMTT.2015.2431685 Google Scholar
12. Kato, Y. and M. Horibe, "Improvement of transmission/reflection method for permittivity measurement using long fixtures with time-domain," IEEE Transactions on Instrumentation and Measurement, Vol. 66, 1201-1207, 2017.
doi:10.1109/TIM.2017.2653598 Google Scholar
13. Barry, W., "A broad-band, automated, stripline technique for the simultaneous measurement," IEEE Transactions on Microwave Theory and Techniques, Vol. 34, 80-84, 1986.
doi:10.1109/TMTT.1986.1133283 Google Scholar
14. Baker-Jarvis, J., "Transmission/reflection and short-circuit line permittivity measurement,", NIST Project, National Institute of Standards and Technology, Colorado, 1990. Google Scholar
15. Vector network analyzer uncertainty calculator, Keysight Software, version: 5.0.6.0, Jul. 2017. Google Scholar
16. Yamada, H., A. Meier, F. Mazzocchi, S. Schreck, and T. Scherer, "Dielectric properties of single crystalline diamond wafers with large area at microwave wavelengths," Diamond and Related Materials, Vol. 58, 1-4, 2015.
doi:10.1016/j.diamond.2015.05.004 Google Scholar
17. Thumm, M., "MPACVD-diamond windows for high-power and long-pulse millimeter wave transmission," Diamond and Related Materials, Vol. 10, 1692-1699, 2001.
doi:10.1016/S0925-9635(01)00397-1 Google Scholar
18. Heidinger, R., G. Dammertz, A. Meier, and M. K. Thumm, "CVD diamond windows studied with low- and high-power millimeter waves," IEEE Transactions on Plasma Science, Vol. 30, 800-807, 2002.
doi:10.1109/TPS.2002.1158309 Google Scholar
19. Liu, Y. Q., M. H. Ding, J. J. Su, H. Ren, X. R. Lu, and W. Z. Tang, "An investigation on dielectric properties of diamond films in the range of K and Ka band," Diamond and Related Materials, Vol. 73, 114-120, 2017.
doi:10.1016/j.diamond.2016.08.007 Google Scholar
20. Hasar, U. C., "Self-calibrating transmission-reflection technique for constitutive parameters retrieval of materials," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, 1081-1089, 2018.
doi:10.1109/TMTT.2017.2756964 Google Scholar
21. Ding, M., Y. Liu, X. Lu, Y. Li, and W. Tang, "Boron doped diamond films: A microwave attenuation material with high thermal conductivity," Applied Physics Letters, Vol. 114, 162901, 2019.
doi:10.1063/1.5083079 Google Scholar