Vol. 87
Latest Volume
All Volumes
PIERL 123 [2024] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-09-02
Miniaturized Microstrip Lowpass Filter with Ultra-Wide Stopband Performance Using Trapezoid Patch Resonators
By
Progress In Electromagnetics Research Letters, Vol. 87, 39-43, 2019
Abstract
A new miniaturized microstrip lowpass filter with ultra-wide stopband performance using trapezoid patch resonators is investigated. To achieve compact design and ultra-wide band rejection, trapezoid patch resonators are employed in the filter. To further reduce the circuit size of the filter, a meander transmission line is also introduced in the design. A demonstration filter with 3 dB cutoff frequency at 0.50 GHz has been designed, fabricated, and measured. Results indicate that the proposed filter is able to suppress the 26th harmonic response referred to a suppression degree of 15 dB. Furthermore, the proposed filter exhibits a small size of 0.122λg×0.109λg, where λg is the guided wavelength at 0.50 GHz.
Citation
Bing Xie, and Hongbin Yu, "Miniaturized Microstrip Lowpass Filter with Ultra-Wide Stopband Performance Using Trapezoid Patch Resonators," Progress In Electromagnetics Research Letters, Vol. 87, 39-43, 2019.
doi:10.2528/PIERL19062606
References

1. Pozar, D. M., Microwave Engineering, 3rd edition, 412–415, Wiley, New York, USA, 2005.

2. Ho, M.-H., C.-Y. Hou, C.-I. G. Hsu, and K.-Y. Lee, "Compact balanced bandpass filter design using miniaturized substrate integrated waveguide cavities," IET Microwaves, Antennas and Propagation, Vol. 12, No. 13, 2030-2033, 2018.
doi:10.1049/iet-map.2018.5202

3. Li, J.-L., S.-W. Qu, and Q. Xue, "Compact microstrip lowpass filter with sharp roll-off and wide stop-band," Electron. Lett., Vol. 45, No. 2, 110-111, 2009.
doi:10.1049/el:20093246

4. Li, L., Z.-F. Li, and Q.-F. Wei, "Compact and selective lowpass filter with very wide stopband using tapered compact microstrip resonant cells," Electron. Lett., Vol. 45, No. 5, 267-268, 2009.
doi:10.1049/el:20092120

5. Ma, K. X. and K. S. Yeo, "New harmonic suppression low-pass filter using transformed radial stubs," IEEE Trans Microw. Theory Tech., Vol. 59, No. 3, 604-611, 2011.
doi:10.1109/TMTT.2010.2095031

6. Hayati, M., A. Sheikhi, and A. Lotfi, "Compact lowpass filter with wide stopband using modified semi-elliptic and semi-circular microstrip patch resonator," Electron. Lett., Vol. 46, No. 22, 1507-1509, 2010.
doi:10.1049/el.2010.2367

7. Wei, X.-B., P. Wang, M.-Q. Liu, and Y. Shi, "Compact wide-stopband lowpass filter using stepped impedance hairpin resonator with radial stubs," Electron. Lett., Vol. 47, No. 15, 862-863, 2011.
doi:10.1049/el.2011.1414

8. Wei, F., L. Chen, X.-W. Shi, Q.-L. Huang, and X.-H. Wang, "Compact lowpass filter with wide stop-band using coupled-line hairpin unit," Electron. Lett., Vol. 46, No. 1, 88-90, 2010.
doi:10.1049/el.2010.2411

9. Wang, J.-P., H.-F. Cui, and G. Zhang, "Design of compact microstrip lowpass filter with ultra-wide stopband," Electron. Lett., Vol. 48, No. 14, 854-856, 2012.
doi:10.1049/el.2012.1362

10. Abdipour, A., A. Nouritabar, A. Abdipour, H. Shamsi, and S. A. Ahmadi, "A miniaturized microstrip lowpass filter with sharp skirt performance and wide stopband utilizing modified hairpin resonator with long straight slots," Progress In Electromagnetics Research C, Vol. 78, 83-92, 2017.
doi:10.2528/PIERC17072706

11. Rekha, T. K., P. Abdulla, P. M. Jasmine, and P. M. Raphika, "Improved frequency response of microstrip lowpass filter using defected ground structures," Progress In Electromagnetics Research C, Vol. 81, 31-40, 2018.
doi:10.2528/PIERC17112002