1. Pourya, P., A. Ghanbarzadeh, M. Wilson, et al. "An experimental and analytical study of the effect of water and its tribochemistry on the tribocorrosive wear of boundary lubricated systems with ZDDP-containing oil," Wear, Vol. 358-359, No. 15, 23-31, 2016. Google Scholar
2. Harika, E., J. Bouyer, M. Fillon, et al. "Effects of water contamination of lubricants on hydrodynamic lubrication: Rheological and thermal modeling," Journal of Tribology - Transactions of the ASME, Vol. 135, No. 4, 041707, 2013.
doi:10.1115/1.4024812 Google Scholar
3. Engelhardt, C., J. Witzig, T. Tobie, et al. "Influence of water contamination in gear lubricants on wear and micro-pitting performance of case carburized gears," Industrial Lubrication and Tribology, Vol. 69, No. 4, 612-619, 2017.
doi:10.1108/ILT-07-2016-0152 Google Scholar
4. Larsson, W., J. Jalbert, R. Gilbert, et al. "Efficiency of methods for Karl Fischer determination of water in oils based on oven evaporation and azeotropic distillation," Analytical Chemistry, Vol. 75, No. 6, 1227-1232, 2003.
doi:10.1021/ac026229+ Google Scholar
5. Mao, Z. B., J. X. Zhao, W. P. Xuan, et al. "Distilling determination of water content in hydraulic oil with a ZnO/glass surface acoustic wave device," Microsystem Technologies, Vol. 23, No. 6, 1841-1845, 2017.
doi:10.1007/s00542-016-2922-3 Google Scholar
6. Holland, T., A. M. Abdul-Munaim, D. G. Watson, et al. "Importance of emulsification in calibrating infrared spectroscopes for analyzing water contamination in used or in-service engine oil," Lubricants, Vol. 6, No. 2, 35, 2018.
doi:10.3390/lubricants6020035 Google Scholar
7. Landy, N. I., S. Sajuyigbe, J. J. Mock, et al. "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, No. 20, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402 Google Scholar
8. Hu, C. G., Z. Y. Zhao, X. N. Chen, et al. "Realizing near-perfect absorption at visible frequencies," Optics Express, Vol. 17, No. 13, 11039-11044, 2011.
doi:10.1364/OE.17.011039 Google Scholar
9. Wen, Q. Y., H. W. Zhang, Y. S. Xie, et al. "Dual band terahertz metamaterial absorber: Design, fabrication, and characterization," Applied Physics Letters, Vol. 95, No. 24, 1111, 2009.
doi:10.1063/1.3276072 Google Scholar
10. Gu, C., S. B. Qu, Z. B. Pei, et al. "A metamaterial absorber with direction-selective and polarisation-insensitive properties," Chinese Physics B, Vol. 20, No. 3, 433-437, 2011.
doi:10.1088/1674-1056/20/3/037801 Google Scholar
11. Agarwal, S. and Y. K. Prajapati, "Broadband and polarization-insensitive helix metamaterial absorber using graphene for terahertz region," Applied Physics A, Vol. 122, No. 6, 561, 2016.
doi:10.1007/s00339-016-0078-8 Google Scholar
12. Dincer, F., O. Akgol, M. Karaaslan, E. Unal, and C. Sabah, "Polarization angle independent perfect metamaterial absorbers for solar cell applications in the microwave, infrared, and visible regime," Progress In Electromagnetics Research, Vol. 144, 93-101, 2014.
doi:10.2528/PIER13111404 Google Scholar
13. Mohammad, R. S., A. S Ramezanali, G. Hadi, et al. "Design and fabrication of a metamaterial absorber in the microwave range," Microwave and Optical Technology Letters, Vol. 56, No. 8, 1748-1752, 2014.
doi:10.1002/mop.28437 Google Scholar
14. Akgol, O., M. Bagmanci, M. Karaaslan, et al. "Broad band MA-based on three-type resonator having resistor for microwave energy harvesting," Journal of Microwave Power and Electromagnetic Energy, Vol. 51, No. 2, 134-149, 2017.
doi:10.1080/08327823.2017.1321928 Google Scholar
15. Alkurt, F. O., O. Altintas, M. Bakir, et al. "Octagonal shaped metamaterial absorber based energy harvester," Materials Science, Vol. 24, No. 3, 253-259, 2018.
doi:10.5755/j01.ms.24.3.18625 Google Scholar
16. Agarwal, S. and Y. K. Prajapati, "Multifunctional metamaterial surface for absorbing and sensing applications," Optics Communications, Vol. 439, 304-307, 2019.
doi:10.1016/j.optcom.2019.01.020 Google Scholar
17. Jeong, H. J. and L. Sungjoon, "A stretchable radio-frequency strain sensor using screen printing technology," Sensors, Vol. 16, No. 11, 1839, 2016.
doi:10.3390/s16111839 Google Scholar
18. Bakir, M., M. Karaaslan, F. Dincer, et al. "Perfect metamaterial absorber-based energy harvesting and sensor applications in the industrial, scientific, and medical band," Optical Engineering, Vol. 54, No. 9, 097102, 2015.
doi:10.1117/1.OE.54.9.097102 Google Scholar
19. Tang, J. Y., Z. Y. Xiao, and K. K. Xu, "Broadband ultrathin absorber and sensing application based on hybrid materials in infrared region," Plasmonics, Vol. 12, No. 4, 91-98, 2016. Google Scholar
20. Ozturk, M., U. K. Sevim, O. Akgol, et al. "An electromagnetic non-destructive approach to determine dispersion and orientation of fiber reinforced concretes," Measurement, Vol. 138, 356-367, 2019.
doi:10.1016/j.measurement.2019.01.039 Google Scholar
21. Abdulkarim, Y. I., L. W. Deng, O. Altıntaş, et al. "Metamaterial absorber sensor design by incorporating swastika shaped resonator to determination of the liquid chemicals depending on electrical characteristics," Physica E: Low-dimensional Systems and Nanostructures, Vol. 114, 113593, 2019.
doi:10.1016/j.physe.2019.113593 Google Scholar
22. Altintas, O., M. Aksoy, E. Unal, et al. "Artificial neural network approach for locomotive maintenance by monitoring dielectric properties of engine lubricant," Measurement, Vol. 145, 678-686, 2019.
doi:10.1016/j.measurement.2019.05.087 Google Scholar
23. Altintas, O., M. Aksoy, E. Unal, et al. "Chemical liquid and transformer oil condition sensor based on metamaterial-inspired labyrinth resonator," Journal of the Electrochemical Society, Vol. 166, No. 6, B482-B488, 2019.
doi:10.1149/2.1101906jes Google Scholar
24. Tumkaya, M. A., F. Dincer, M. Karaaslan, et al. "Sensitive metamaterial sensor for distinction of authentic and inauthentic fuel samples," Journal of Electronic Materials, Vol. 46, No. 8, 4955-4962, 2017.
doi:10.1007/s11664-017-5485-x Google Scholar
25. Liu, J. J., L. L. Fan, J. F. Ku, et al. "Absorber: A novel terahertz sensor in the application of substance identification," Optical and Quantum Electronics, Vol. 48, No. 2, 80, 2016.
doi:10.1007/s11082-015-0361-5 Google Scholar
26. Ling, K., M. Yoo, W. J. Su, et al. "Microfluidic tunable inkjet-printed metamaterial absorber on paper," Optics Express, Vol. 23, No. 1, 110-120, 2015.
doi:10.1364/OE.23.000110 Google Scholar
27. Wei, Z. H., J. Huang, J. Li, et al. "A high-sensitivity microfluidic sensor based on a substrate integrated waveguide re-entrant cavity for complex permittivity measurement of liquids," Sensors, Vol. 18, No. 11, 4005, 2018.
doi:10.3390/s18114005 Google Scholar
28. Robiatun, R. A., F. J. Tovar-Lopez, T. Baum, et al. "Meta-atom microfluidic sensor for measurement of dielectric properties of liquids," Journal of Applied Physics, Vol. 121, No. 9, 094506, 2017.
doi:10.1063/1.4978012 Google Scholar
29. Yoo, M., H. K. Kim, and S. Lim, "Electromagnetic-based ethanol chemical sensor using metamaterial absorber," Sensors and Actuators B: Chemical, Vol. 222, 173-180, 2016.
doi:10.1016/j.snb.2015.08.074 Google Scholar
30. Alici, K. B. and E. A. Ozbay, "A planar metamaterial: Polarization independent fishnet structure," Photonics and Nanostructures - Fundamentals and Applications, Vol. 6, No. 1, 102-107, 2008.
doi:10.1016/j.photonics.2008.01.001 Google Scholar
31. Xie, C. F. and K. Q. Rao, Electromagnetic Field and Electromagnetic Wave, 3rd Ed., Higher Education Press, 1999.