Vol. 85
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-09-24
Detection of Water Content in Emulsified Oil with the Metamaterial Sensor
By
Progress In Electromagnetics Research M, Vol. 85, 135-144, 2019
Abstract
A metamaterial sensor that can be applied to detect water content in emulsified oil is proposed, which is reusable in experiment and nondestructive to the sample. Electric field of the original absorber is researched to guide the design of microfluidic. Also, its equivalent circuit model is proposed to validate its ability as a sensor. The calculated sensitivity of the sensor is 339 MHz/ε'r in the range of 11.26 GHz to 10.044 GHz, indicating its potential for detecting the emulsified oil. The experimental results reveal the reliable process of detection and the linear relationship between frequency shift and water content. This work provides a fast and convenient solution to check the quality of lubricant oil to some extent, which is relatively valuable to modern machinery.
Citation
Jie Huang Zhihua Wei Guoqing Xu Jun-Shan Li Jing Li , "Detection of Water Content in Emulsified Oil with the Metamaterial Sensor," Progress In Electromagnetics Research M, Vol. 85, 135-144, 2019.
doi:10.2528/PIERM19063002
http://www.jpier.org/PIERM/pier.php?paper=19063002
References

1. Pourya, P., et al., "An experimental and analytical study of the effect of water and its tribochemistry on the tribocorrosive wear of boundary lubricated systems with ZDDP-containing oil," Wear, Vol. 358-359, No. 15, 23-31, 2016.

2. Harika, E., et al., "Effects of water contamination of lubricants on hydrodynamic lubrication: Rheological and thermal modeling," Journal of Tribology - Transactions of the ASME, Vol. 135, No. 4, 041707, 2013.
doi:10.1115/1.4024812

3. Engelhardt, C., et al., "Influence of water contamination in gear lubricants on wear and micro-pitting performance of case carburized gears," Industrial Lubrication and Tribology, Vol. 69, No. 4, 612-619, 2017.
doi:10.1108/ILT-07-2016-0152

4. Larsson, W., et al., "Efficiency of methods for Karl Fischer determination of water in oils based on oven evaporation and azeotropic distillation," Analytical Chemistry, Vol. 75, No. 6, 1227-1232, 2003.
doi:10.1021/ac026229+

5. Mao, Z. B., et al., "Distilling determination of water content in hydraulic oil with a ZnO/glass surface acoustic wave device," Microsystem Technologies, Vol. 23, No. 6, 1841-1845, 2017.
doi:10.1007/s00542-016-2922-3

6. Holland, T., et al., "Importance of emulsification in calibrating infrared spectroscopes for analyzing water contamination in used or in-service engine oil," Lubricants, Vol. 6, No. 2, 35, 2018.
doi:10.3390/lubricants6020035

7. Landy, N. I., et al., "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, No. 20, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402

8. Hu, C. G., et al., "Realizing near-perfect absorption at visible frequencies," Optics Express, Vol. 17, No. 13, 11039-11044, 2011.
doi:10.1364/OE.17.011039

9. Wen, Q. Y., et al., "Dual band terahertz metamaterial absorber: Design, fabrication, and characterization," Applied Physics Letters, Vol. 95, No. 24, 1111, 2009.
doi:10.1063/1.3276072

10. Gu, C., et al., "A metamaterial absorber with direction-selective and polarisation-insensitive properties," Chinese Physics B, Vol. 20, No. 3, 433-437, 2011.
doi:10.1088/1674-1056/20/3/037801

11. Agarwal, S. and Y. K. Prajapati, "Broadband and polarization-insensitive helix metamaterial absorber using graphene for terahertz region," Applied Physics A, Vol. 122, No. 6, 561, 2016.
doi:10.1007/s00339-016-0078-8

12. Dincer, F., O. Akgol, M. Karaaslan, E. Unal, and C. Sabah, "Polarization angle independent perfect metamaterial absorbers for solar cell applications in the microwave, infrared, and visible regime," Progress In Electromagnetics Research, Vol. 144, 93-101, 2014.
doi:10.2528/PIER13111404

13. Mohammad, R. S., et al., "Design and fabrication of a metamaterial absorber in the microwave range," Microwave and Optical Technology Letters, Vol. 56, No. 8, 1748-1752, 2014.
doi:10.1002/mop.28437

14. Akgol, O., et al., "Broad band MA-based on three-type resonator having resistor for microwave energy harvesting," Journal of Microwave Power and Electromagnetic Energy, Vol. 51, No. 2, 134-149, 2017.
doi:10.1080/08327823.2017.1321928

15. Alkurt, F. O., et al., "Octagonal shaped metamaterial absorber based energy harvester," Materials Science, Vol. 24, No. 3, 253-259, 2018.
doi:10.5755/j01.ms.24.3.18625

16. Agarwal, S. and Y. K. Prajapati, "Multifunctional metamaterial surface for absorbing and sensing applications," Optics Communications, Vol. 439, 304-307, 2019.
doi:10.1016/j.optcom.2019.01.020

17. Jeong, H. J. and L. Sungjoon, "A stretchable radio-frequency strain sensor using screen printing technology," Sensors, Vol. 16, No. 11, 1839, 2016.
doi:10.3390/s16111839

18. Bakir, M., et al., "Perfect metamaterial absorber-based energy harvesting and sensor applications in the industrial, scientific, and medical band," Optical Engineering, Vol. 54, No. 9, 097102, 2015.
doi:10.1117/1.OE.54.9.097102

19. Tang, J. Y., Z. Y. Xiao, and K. K. Xu, "Broadband ultrathin absorber and sensing application based on hybrid materials in infrared region," Plasmonics, Vol. 12, No. 4, 91-98, 2016.

20. Ozturk, M., et al., "An electromagnetic non-destructive approach to determine dispersion and orientation of fiber reinforced concretes," Measurement, Vol. 138, 356-367, 2019.
doi:10.1016/j.measurement.2019.01.039

21. Abdulkarim, Y. I., et al., "Metamaterial absorber sensor design by incorporating swastika shaped resonator to determination of the liquid chemicals depending on electrical characteristics," Physica E: Low-dimensional Systems and Nanostructures, Vol. 114, 113593, 2019.
doi:10.1016/j.physe.2019.113593

22. Altintas, O., et al., "Artificial neural network approach for locomotive maintenance by monitoring dielectric properties of engine lubricant," Measurement, Vol. 145, 678-686, 2019.
doi:10.1016/j.measurement.2019.05.087

23. Altintas, O., et al., "Chemical liquid and transformer oil condition sensor based on metamaterial-inspired labyrinth resonator," Journal of the Electrochemical Society, Vol. 166, No. 6, B482-B488, 2019.
doi:10.1149/2.1101906jes

24. Tumkaya, M. A., et al., "Sensitive metamaterial sensor for distinction of authentic and inauthentic fuel samples," Journal of Electronic Materials, Vol. 46, No. 8, 4955-4962, 2017.
doi:10.1007/s11664-017-5485-x

25. Liu, J. J., et al., "Absorber: A novel terahertz sensor in the application of substance identification," Optical and Quantum Electronics, Vol. 48, No. 2, 80, 2016.
doi:10.1007/s11082-015-0361-5

26. Ling, K., et al., "Microfluidic tunable inkjet-printed metamaterial absorber on paper," Optics Express, Vol. 23, No. 1, 110-120, 2015.
doi:10.1364/OE.23.000110

27. Wei, Z. H., et al., "A high-sensitivity microfluidic sensor based on a substrate integrated waveguide re-entrant cavity for complex permittivity measurement of liquids," Sensors, Vol. 18, No. 11, 4005, 2018.
doi:10.3390/s18114005

28. Robiatun, R. A., et al., "Meta-atom microfluidic sensor for measurement of dielectric properties of liquids," Journal of Applied Physics, Vol. 121, No. 9, 094506, 2017.
doi:10.1063/1.4978012

29. Yoo, M., H. K. Kim, and S. Lim, "Electromagnetic-based ethanol chemical sensor using metamaterial absorber," Sensors and Actuators B: Chemical, Vol. 222, 173-180, 2016.
doi:10.1016/j.snb.2015.08.074

30. Alici, K. B. and E. A. Ozbay, "A planar metamaterial: Polarization independent fishnet structure," Photonics and Nanostructures - Fundamentals and Applications, Vol. 6, No. 1, 102-107, 2008.
doi:10.1016/j.photonics.2008.01.001

31. Xie, C. F. and K. Q. Rao, Electromagnetic Field and Electromagnetic Wave, 3rd Ed., Higher Education Press, Beijing, China, 1999.