Vol. 87
Latest Volume
All Volumes
PIERL 123 [2024] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-10-27
Compact Single-Layer Balanced Eighth-Mode Substrate Integrated Waveguide Bandpass Filter with High Selectivity
By
Progress In Electromagnetics Research Letters, Vol. 87, 131-136, 2019
Abstract
This letter proposes a compact single-layer balanced bandpass filter (BPF), which is realized by a new arrangement of eighth-mode substrate integrated waveguide (EMSIW) cavities. Under differential-mode (DM) operation, the half bisection topology of the proposed EMSIW filter can be equivalent to a quadruplet scheme based on four coupled EMSIW cavities. The negative cross coupling can be easily realized by the nature of the fringe electric fields of opened ends of EMSIW cavities. For the demonstration, a balanced EMSIW filter with the operating frequency at 2.4 GHz is designed, fabricated, and measured.
Citation
Xiao-Bang Ji, Qing Liu, and Mi Yang, "Compact Single-Layer Balanced Eighth-Mode Substrate Integrated Waveguide Bandpass Filter with High Selectivity," Progress In Electromagnetics Research Letters, Vol. 87, 131-136, 2019.
doi:10.2528/PIERL19071501
References

1. Wei, F., P. Qin, Y. J. Guo, C. Ding, and X. W. Shi, "Compact balanced dual- and tri-band bpfs based on coupled complementary split-ring resonators (C-CSRR)," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 2, 107-109, 2016.
doi:10.1109/LMWC.2016.2517125

2. Wei, F., Y. J. Guo, P. Qin, and X. W. Shi, "Compact balanced dual- and tri-band bandpass filters based on stub loaded resonators," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 2, 76-78, 2015.
doi:10.1109/LMWC.2014.2370233

3. Yang, Z.-J., Y.-Y. Shan, X.-T Zou, F. Wei, and B. Li, "A balanced bandpass filter with ultra-wide stopband and common-mode suppression," Progress In Electromagnetics Research Letters, Vol. 77, 123-128, 2018.
doi:10.2528/PIERL18062508

4. Deng, K. and Z. Chen, "Wideband balanced filters with wideband common mode suppression using coupled lines," Progress In Electromagnetics Research Letters, Vol. 65, 49-55, 2017.
doi:10.2528/PIERL16111201

5. Xu, X., J. Wang, and L. Zhu, "A new approach to design differential-mode bandpass filters on SIW structure," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 12, 635-637, 2013.
doi:10.1109/LMWC.2013.2283859

6. Chu, P., W. Hong, K. Wang, et al. "Balanced substrate integrated waveguide filter," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 4, 824-831, 2014.
doi:10.1109/TMTT.2014.2307055

7. Chu, H., P. Li, and J. Chen, "Balanced substrate integrated waveguide bandpass filter with high selectivity and common-mode suppression," IET Microw., Antennas Propag., Vol. 9, No. 2, 133-141, 2015.
doi:10.1049/iet-map.2013.0708

8. Chu, P. and K. Wu, "Balanced dual-mode SIW filter," Electron. Lett., Vol. 55, No. 4, 208-210, 2019.
doi:10.1049/el.2018.7289

9. Li, P., H. Chu, D. Zhao, and R. S. Chen, "Compact dual-band balanced SIW bandpass filter with improved common-mode suppression," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 4, 347-349, 2017.
doi:10.1109/LMWC.2017.2678428

10. Ho, M. and C. Li, "Novel balanced bandpass filters using substrate integrated half-mode waveguide," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 2, 78-80, 2013.
doi:10.1109/LMWC.2013.2238911

11. Li, P., H. Chu, and R. Chen, "Design of compact bandpass filters using quarter-mode and eighthmode SIW cavities," IEEE Trans. Compon., Packag., Manuf. Technol., Vol. 7, No. 6, 956-963, 2017.
doi:10.1109/TCPMT.2017.2677958

12. Lu, J., C. Liao, and C. Chang, "Microstrip parallel-coupled filters with cascade trisection and quadruplet responses," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 9, 2101-2110, 2008.
doi:10.1109/TMTT.2008.2002226