Vol. 88
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-12-05
Wideband Ultraminiaturised-Element Frequency Selective Surface Based on Interlocked 2.5-Dimensional Structures
By
Progress In Electromagnetics Research Letters, Vol. 88, 37-42, 2020
Abstract
An approach to synthesizing wideband ultraminiaturised-element frequency selective surface (UMEFSS) based on interlocked 2.5-dimensional (2.5D) structures is proposed. Ultra-miniaturisation and wide stopband response can be realized due to compactly staggered arrangement of 2.5D elements. The element size of the proposed UMEFSS is reduced to 0.033λ0×0.033λ0, and fractional bandwidth attains 99.8%. Stable response is achieved under oblique incidence at different polarisations. The results show a satisfactory consistency between full-wave simulations and experiments.
Citation
Mingqian Jia, Xiaoxiang He, Yang Yang, Boyu Hua, Wenxiu Hu, and Xiangyu Qian, "Wideband Ultraminiaturised-Element Frequency Selective Surface Based on Interlocked 2.5-Dimensional Structures," Progress In Electromagnetics Research Letters, Vol. 88, 37-42, 2020.
doi:10.2528/PIERL19081403
References

1. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, New York, 2000.
doi:10.1002/0471723770

2. Li, M., S. Xiao, Y. Y. Bai, and B. Z. Wang, "An ultrathin and broadband radar absorber using resistive FSS," IEEE Antennas Wireless Propag. Lett., Vol. 11, 748-751, 2012.
doi:10.1109/LAWP.2012.2206361

3. Euler, M., V. Fusco, R. Cahill, and R. Dickie, "Comparison of frequency selective screen-based linear to circular split-ring polarisation convertors," IET Microw. Antennas Propag., Vol. 4, No. 11, 1764-1772, 2010.
doi:10.1049/iet-map.2009.0415

4. Zheng, J. and S.-J. Fang, "A new method for designing low RCS patch antenna using frequency selective surface," Progress In Electromagnetic Research Letters, Vol. 58, 125-131, 2016.
doi:10.2528/PIERL15122702

5. Yu, Y. M., C. N. Chiu, Y. P. Chiou, and T. L. Wu, "A novel 2.5-dimensional ultraminiaturised element frequency selective surface," IEEE Trans. Antennas Propag., Vol. 62, No. 7, 3657-3663, 2014.
doi:10.1109/TAP.2014.2321153

6. Yu, Y.M., C. N. Chiu, Y. P. Chiou, and T. L.Wu, "An effective via-based frequency adjustment and minimization methodology for single-layered frequency-selective surfaces," IEEE Trans. Antennas Propag., Vol. 63, No. 4, 1641-1648, 2015.
doi:10.1109/TAP.2015.2398123

7. Hua, B. Y., X. X. He, and Y. Yang, "Polarisation-independent UWB frequency selective surface based on 2.5D miniaturised hexagonal ring," Electron. Lett., Vol. 53, No. 23, 1502-1504, 2017.
doi:10.1049/el.2017.2921

8. Hussain, T., Q. S. Cao, J. K. Kayani, and I. Majid, "Miniaturization of frequency selective surfaces using 2.5-D knitted structures: Design and synthesis," IEEE Trans. Antennas Propag., Vol. 65, No. 5, 2405-2412, 2017.
doi:10.1109/TAP.2017.2673809

9. Shi, Y., W. Tang, W. Zhuang, and C. Wang, "Miniaturised frequency selective surface based on 2.5-dimensional closed loop," Electron. Lett., Vol. 50, No. 23, 1656-1658, 2014.
doi:10.1049/el.2014.3113

10. Khajevandi, S., H. Oraizi, A. Amini, and M. Poordaraee, "Design of miniaturised-element FSS based on 2.5-dimensional closed-loop Hilbert fractal," IET Microw. Antennas Propag., Vol. 13, No. 6, 742-747, 2019.
doi:10.1049/iet-map.2018.5036

11. Li, D., T. W. Li, and E. P. Li, "Implementation of ultra-miniaturised frequency-selective structures based on 2.5-D convoluted segment," Electron. Lett., Vol. 54, No. 8, 476-477, 2018.
doi:10.1049/el.2017.4415

12. Barbagallo, S., A. Monorchio, and G. Manara, "Small periodicity FSS screens with enhanced bandwidth performance," Electron. Lett., Vol. 42, No. 7, 382-384, 2006.
doi:10.1049/el:20060329

13. Huang, F., J. C. Batchelor, and E. A. Parker, "Interwoven convoluted element frequency selective surfaces with wide bandwidths," Electron. Lett., Vol. 42, No. 14, 788-790, 2006.
doi:10.1049/el:20061589