Vol. 87
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-12-22
Shift Operator-TLM Method for Modeling Gyroelectric Media
By
Progress In Electromagnetics Research M, Vol. 87, 189-197, 2019
Abstract
In this paper, an efficient Transmission Line Matrix (TLM) approach based on the shift operator (SO) has been developed to model electromagnetic wave interactions with gyroelectric media. The main idea of this technique is to formulate the electric current density vector components by introducing the equivalence between time differential operator ϑ/ϑt and discrete time shift operator z. A concise formulation of voltage sources modeling the frequency dispersive properties of gyroelectric media is then deduced and implemented. Numerical simulations illustrate the Faraday rotation phenomenon in time domain, and in the frequency domain, reflection and transmission coefficients of left hand circular polarization and right-hand circular polarization waves are also calculated. A comparison of SO-TLM scheme with five other approches according to the criteria of accuracy and CPU time is presented. Numerical experiments show that SO-TLM provides the most accurate and fastest results.
Citation
Soufiane El Adraoui, Khalid Mounirh, Mohamed Iben Yaich, and Mohsine Khalladi, "Shift Operator-TLM Method for Modeling Gyroelectric Media," Progress In Electromagnetics Research M, Vol. 87, 189-197, 2019.
doi:10.2528/PIERM19081803
References

1. Paul, J., C. Christopoulos, and D. W. P. Thomas, "Generalized material models in TLM, I. Materials with frequency-dependent properties," Transactions on Antennas and Propagation, Vol. 47, No. 10, 1528-1534, 1999.
doi:10.1109/8.805895

2. Yagli, A. F., J. K. Lee, and E. Arvas, "Scattering from three-dimensional Dispersive Gyrotropic Bodies using the TLM method," Progress In Electromagnetics Research B, Vol. 18, 225-241, 2003.

3. Yaich, M. I. and M. Khalladi, "An SCN-TLM model for the analysis of ferrite media," IEEE Microwave and Wireless Components Letters, Vol. 13, No. 6, 217-219, 2009.
doi:10.1109/LMWC.2003.814105

4. Khalladi, M., M. I. Yaich, N. Aknine, and C. Carrion, "Modeling of electromagnetic waves propagation in non-linear optical media using HSCN-TLM method," IEICE Electronics Express, Vol. 2, No. 13, 384-391, 2005.
doi:10.1587/elex.2.384

5. El Adraoui, S., K. Mounirh, A. Zugari, M. I. Yaich, and M. Khalladi, "Novel CDRC-TLM algorithm for the analysis of magnetized plasma," International Journal for Light and Electron Optics, Vol. 125, No. 1, 276-279, 2014.
doi:10.1016/j.ijleo.2013.06.049

6. Mounirh, K., S. El Adraoui, M. Charif, M. I. Yaich, and M. Khalladi, "Modeling of anisotropic magnetized plasma media using PLCDRC-TLM method," International Journal for Light and Electron Optics, Vol. 126, No. 15-16, 1479-1482, 2015.
doi:10.1016/j.ijleo.2015.04.032

7. El Adraoui, S., A. Zugari, K. Mounirh, M. Charif, M. I. Yaich, and M. Khalladi, "Runge- Kutta exponential time differencing-TLM method for modeling cold plasma media," International Conference on Multimedia Computing and Systems (ICMCS), 1363-1366, Marrakech, Morocco, 2014.

8. El Adraoui, S., M. Bassoh, M. Khalladi, M. I. Yaich, and A. Zugari, "RKETD-TLM modeling of anisotropic magnetized plasma," International Journal of Science and Advanced Technology, Vol. 2, No. 8, 81-84, 2012.

9. Mounirh, K., S. El Adraoui, Y. Ekdiha, M. I. Yaich, and M. Khalladi, "Modeling of dispersive chiral media using the ADE-TLM method," Progress In Electromagnetics Research M, Vol. 64, 157-166, 2018.
doi:10.2528/PIERM17110103

10. Attiya, A. M., "Shift-operator finite difference time domain analysis of chiral medium," Progress In Electromagnetics Research M, Vol. 13, No. 10, 29-40, 2010.
doi:10.2528/PIERM10052403

11. Yaich, M. I., M. Khalladi, I. Zekik, and J. A. Morente, "Modeling of frequency-dependent magnetized plasma in hybrid symmetrical condensed TLM method," IEEE Microwave and Wireless Components Letters, Vol. 12, No. 8, 193-195, 2002.
doi:10.1109/LMWC.2002.802027

12. El Adraoui, S., A. Zugari, M. Bassouh, M. I. Yaich, and M. Khalladi, "Novel PLRC-TLM algorithm implementation for modeling electromagnetic wave propagation in gyromagnetic media," International Journal of Advances in Science and Technology, Vol. 6, No. 1, 26-32, 2013.