Vol. 86
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2019-12-09
Numerical Modelling of Electro-Magnetohydrodynamic Disturbances (E-MHD) in a Two-Dimensional Configuration in the Vertical Plane in the Ionosphere: Small Scale and Medium Scale Ionospheric Disturbances
By
Progress In Electromagnetics Research B, Vol. 86, 39-57, 2020
Abstract
We have simulated ionospheric disturbances generated by the buoyancy and electrodynamic effects in a two-dimensional configuration in the vertical plane in the ionospheric F region using a simple two-dimensional mathematical model for internal gravity waves propagating in the lower atmosphere, and we have investigated the characteristics (e.g. buyoancy frequency, wavenumber, wavelength, speed) of the ionospheric disturbances. We find that electrohydrodynamic effects are mainly responsible for small scale non-travelling ionospheric disturbances, while magnetohydrodynamic effects are responsible for travelling ionospheric disturbances, including small scale travelling ionospheric disturbances (SSTIDs), medium scale travelling ionospheric disturbances (MSTIDs) and large scale travelling ionospheric disturbances (LSTIDs). Our results are in agreement with the results obtained from observations.
Citation
Victor Nijimbere, and Lucy J. Campbell, "Numerical Modelling of Electro-Magnetohydrodynamic Disturbances (E-MHD) in a Two-Dimensional Configuration in the Vertical Plane in the Ionosphere: Small Scale and Medium Scale Ionospheric Disturbances," Progress In Electromagnetics Research B, Vol. 86, 39-57, 2020.
doi:10.2528/PIERB19082501
References

1. Afraimovich, E. L., E. A. Kosogorov, L. A.Leonovich, K. S. Palamartchouk, N. P. Perevalova, and O. M. Pirog, "Observation of large-scale traveling ionospheric disturbances of auroral origin by global GPS networks," Earth Planets Space, Vol. 2, 669-674, 2000.
doi:10.1186/BF03352261

2. Afraimovich, E. L., E. I. Astafieva, and S. V. Voyeikov, "Generation of ionospheric irregularities upon propagation of solitary internal gravity wave during the major magnetic storm of October 29–31, 2003," Radiophys. Quantum Electronics, Vol. 49, No. 2, 79-92, 2006.
doi:10.1007/s11141-006-0040-2

3. Cannon, P., M. Angling, L. Barclay, C. Curry, C. Dyer, R. Edwards, G. Greene, M. Hapgood, R. Horne, D. Jackson, C. Mitchell, J. Owen, A. Richards, C. Rogers, K. Ryden, S. Saunders, M. Sweeting, R. Tanner, A. Thomson, and C. Underwood, Extreme Space Weather: Impacts on Engineered Systems and Infrastructure, Royal Academy of Engineering, London, 2013.

4. Cheng, D. K., Field and Wave Electromagnetics, Addison-Wesley Publish Comp. Inc, 1992.

5. Danilov, A. D. and J. Lastovicka, "Effects of geomagnetic storms on the ionosphere and atmosphere," Int. J. Geomagn. Aeron., Vol. 2, No. 3, 209-224, 2001.

6. Falconer, D., A. F. Barghouty, I. Khazanov, and R. Moore, "A tool for empirical forecasting of major flares, coronal mass ejections, and solar particle events from a proxy of active-region free magnetic energy," Space Weather, Vol. 9, No. 4, S04003, 2011.
doi:10.1029/2009SW000537

7. Figueiredo, C. A. O. B., C. M. Wrasse, H. Takahashi, Y. Otsuka, K. Shiokawa, and D. Barros, "Large-scale traveling ionospheric disturbances observed by GPS dTEC maps over North and South America on Saint Patrick’s Day storm in 2015," JGR Space Phys., Vol. 122, No. 4, 4755-4763, 2017.

8. Freidberg, J. P., Ideal MHD, Cambridge University Press, 2014.
doi:10.1017/CBO9780511795046

9. Harris, T. J., M. A. Cervera, and D. H. Meehan, "SpICE: A program to study small–scale disturbances in the ionosphere," J. Geophys. Res. Space Physics, Vol. 117, A06321, 2012.

10. Holzworth, R. H., M. C. Kelley, C. L. Siefring, L. C. Hale, and J. D. Mitchell, "Electrical measurements in the atmosphere and the ionosphere over an active thunderstorm, 2. Direct current electric fields and conductivity," J. Geophys. Res., Vol. 19, No. A10, 9824-9830, 1985.
doi:10.1029/JA090iA10p09824

11. Hunsucker, R. D., "Atmospheric gravity waves generated in the high atitude ionosphere: A review," Rev. Geophys., Vol. 20, 293-315, 1982.
doi:10.1029/RG020i002p00293

12. Hunsucker, R. D. and J. K. Hargreaves, The High-latitude Ionosphere and Its Effects on Radio Propagation, Cambridge University Press, 2003.

13. Kelley, M. C. and C. A. Miller, "Electrodynamics of midlatitude spread F, 3. Electrohydrodynamic waves? A new look at the role of electric fields in thermospheric wave dynamics," J. Geophys. Res., Vol. 102, 11539-11547, 1997.
doi:10.1029/96JA03841

14. King, J. W., "Sun-weather relationships," Aeronaut. Astronaut., Vol. 13, No. 4, 10-19, 1975.

15. Kulsrud, R. M., Plasma Physics for Astrophysics, Princeton University Press, 2004.

16. Kundu, P. K. and I. M. Cohen, Fluid Mechanics, Academic Press, New York, 2004.

17. Lastovicka, J., "Effects of geomagnetic storms-different morphology and origin in the upper middle atmosphere and troposphere," Stud. Geophys. Geod., Vol. 41, 73-81, 1997.
doi:10.1023/A:1023340824496

18. Lastovicka, J. and A. Bourdillon, "Ionospheric effects on terrestrial communications: Working Group 3 overview," Ann. Geophys., Vol. 47, 1269-1277, 2004.

19. Mansilla, G. A. and M. Zossi De Artigas, "Evidence of geomagnetic storm effects in the lower atmosphere: A case study," Stud. Geophys. Geod., Vol. 54, 487-494, 2010.
doi:10.1007/s11200-010-0028-4

20. Nijimbere, V., Ionospheric gravity wave interactions and their representation in terms of stochastic partial differential equations, Ph.D. Thesis, Carleton University, 2014, doi: 10.22215/etd/2014-10245.

21. Nijimbere, V., "Implementation of a Wiener chaos expansion method for the numerical solution of the stochastic generalized Kuramoto-Sivashinsky equation driven by Brownian motion forcing," Journal of Advances in Applied Mathematics, Vol. 4, No. 4, 119-142, 2019, doi: 10.22606/jaam.2019.44001.
doi:10.22606/jaam.2019.44001

22. Nijimbere, V. and L. J. Campbell, "Electromagnetic field solutions in an isotropic medium with weakly-random fluctuations in time and some applications in the electrodynamics of the ionosphere," Progress In Electromagnetics Research B, Vol. 83, 77-92, 2019.
doi:10.2528/PIERB18102003

23. Nijimbere, V. and L. J. Campbell, "A nonlinear time-dependent radiation condition for simulations of internal gravity waves in geophysical fluids," Appl. Numer. Math., Vol. 110, 75-92, 2016.
doi:10.1016/j.apnum.2016.08.001

24. Parks, G. K., Physics of Space Plasma, 2nd Ed., Westview Press, 2005.

25. Prikryl, P., S. Hawlitschka, U.-P. Hoppe, S. P. Cannon, and T. P. Bernhard, Characterizing the ionosphere, Final report of task group IST-051, RTO/NATO, 2009.

26. Ratcliffe, J. A., An Introduction to the Ionosphere and Magnetosphere, Cambridge University Press, 1972.

27. Song, Q., F. Ding, W. Wan, B. Ning, and B. Zhao, "Monitoring traveling ionospheric disturbances using GPS network around China during the geomagnetic storm on 28 May 2011," Science China Earth Sci., Vol. 56, 718-726, 2013.
doi:10.1007/s11430-012-4573-2

28. Spiegel, E. A. and G. Veronis, "On the Boussinesq approximation for compressible fluid," Astrophys. J., Vol. 6, 442-447, 1960.
doi:10.1086/146849

29. Sutherland, B. R., Internal Gravity Waves, Cambridge University Press, 2010.
doi:10.1017/CBO9780511780318

30. Torta, J. M., M. Marsal, and M. Quintana, "Assessing the hazard from geomagnetically induced currents to the entire high-voltage power network in Spain," Earth, Planets and Space, Vol. 66, No. 87, 2014.

31. Wang, M., F. Ding, W. Wan, B. Ning, and B. Zhao, "Monitoring global traveling ionospheric disturbances using the worldwide GPS network during the October 2003 storms," Earth Planets Space, Vol. 59, 407-419, 2007.
doi:10.1186/BF03352702

32. Zastawniak, T. and Z. Brzezniak, Basic Stochastic Processes, Springer-Verlag, Berlin, 2003.

33. Zhang, S. R., J. M. Holt, P. J. Erickson, L. P. Goncharenko, M. J. Nicolls, M. McCready, and J. Kelley, "Ionospheric ion temperature climate and upper atmospheric long-term cooling," J. Geophys. Res. Space Physics, Vol. 121, 8951-8968, 2016.
doi:10.1002/2016JA022971