Vol. 88
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-12-10
A Novel Lumped LC Resonator Antenna with Air-Substrate for 5G Mobile Terminals
By
Progress In Electromagnetics Research Letters, Vol. 88, 75-81, 2020
Abstract
The extending applications for mobile computing have experienced immense progress over the previous decade. However, this has ultimately influenced the shortage of bandwidth. Therefore, to fulfill the consumers' demand, inexpensive antennas need to be uniquely designed for the next/fifth generation (5G) frequency spectrum. Consequently, this paper presents a novel antenna composed of inductors (L) or capacitors (C) on an air-substrate. Zinc (Zn) and copper (Cu) materials are utilized to fabricate the lumped LC resonator prototype. The effects of antenna's and substrate's thickness on resonant frequency or bandwidth have been studied. The finalized configuration engaged 1113 sq. mm area and operated at 28 GHz with approximately 3 GHz bandwidth. At resonant frequency, the system demonstrates peak gain and efficiency values of 10.6 dBi and 91%, respectively. The core objective of this paper is to report an antenna featuring simple and economical design along with premium results for 5G mobile terminals.
Citation
Shahanawaz Kamal, Abdullahi S. B. Mohammed, Mohd Fazil Ain, Fathul Najmi, Roslina Hussin, Zainal Arifin Ahmad, Ubaid Ullah, Mohammadariff Othman, and Mohd Fariz Ab Rahman, "A Novel Lumped LC Resonator Antenna with Air-Substrate for 5G Mobile Terminals," Progress In Electromagnetics Research Letters, Vol. 88, 75-81, 2020.
doi:10.2528/PIERL19090509
References

1. Ban, Y.-L., et al. "4G/5G multiple antennas for future multi-mode smartphone applications," IEEE Access, Vol. 4, 2981-2988, 2016.
doi:10.1109/ACCESS.2016.2582786

2. Zeng, Y. and R. Zhang, "Cost-effective millimeter-wave communications with lens antenna array," IEEE Wireless Communications, Vol. 24, 81-87, 2017.
doi:10.1109/MWC.2017.1600336

3. Wang, Y., et al. "5G mobile: Spectrum broadening to higher-frequency bands to support high data rates," IEEE Vehicular Technology Magazine, Vol. 9, No. 3, 39-46, 2014.
doi:10.1109/MVT.2014.2333694

4. Balanis, C. A., Modern Antenna Handbook, John Wiley & Sons, 2011.

5. Matin, M., B. Sharif, and C. Tsimenidis, "Dual layer stacked rectangular microstrip patch antenna for ultra wideband applications," IET Microwaves, Antennas & Propagation, Vol. 1, 1192-1196, 2007.
doi:10.1049/iet-map:20070051

6. Croq, F. and A. Papiernik, "Stacked slot-coupled printed antenna," IEEE Microwave and Guided Wave Letters, Vol. 1, 288-290, 1991.
doi:10.1109/75.89098

7. Huynh, T. and K.-F. Lee, "Single-layer single-patch wideband microstrip antenna," Electronics Letters, Vol. 31, 1310-1312, 1995.
doi:10.1049/el:19950950

8. Xiao, S., B.-Z. Wang, W. Shao, and Y. Zhang, "Bandwidth-Enhancing Ultralow-Profile Compact Patch Antenna," IEEE Transactions on Antennas and Propagation, Vol. 53, 3443-3447, 2005.
doi:10.1109/TAP.2005.858838

9. Lu, W.-J., Q. Li, S.-G.Wang, and L. Zhu, "Design approach to a novel dual-mode wideband circular sector patch antenna," IEEE Transactions on Antennas and Propagation, Vol. 65, 4980-4990, 2017.
doi:10.1109/TAP.2017.2734073

10. Liu, N.-W., L. Zhu, W.-W. Choi, and X. Zhang, "A low-profile aperture-coupled microstrip antenna with enhanced bandwidth under dual resonance," IEEE Transactions on Antennas and Propagation, Vol. 65, 1055-1062, 2017.
doi:10.1109/TAP.2017.2657486

11. Liu, J., Q. Xue, H. Wong, H. W. Lai, and Y. Long, "Design and analysis of a low-profile and broadband microstrip monopolar patch antenna," IEEE Transactions on Antennas and Propagation, Vol. 61, 11-18, 2013.
doi:10.1109/TAP.2012.2214996

12. Liu, N.-W., L. Zhu, and W.-W. Choi, "A differential-fed microstrip patch antenna with bandwidth enhancement under operation of TM 10 and TM 30 modes," IEEE Transactions on Antennas and Propagation, Vol. 65, 1607-1614, 2017.
doi:10.1109/TAP.2017.2670329

13. Liu, J. and Q. Xue, "Broadband long rectangular patch antenna with high gain and vertical polarization," IEEE Transactions on Antennas and Propagation, Vol. 61, 539-546, 2013.
doi:10.1109/TAP.2012.2224838

14. Ding, C. and K.-M. Luk, "Low-profile magneto-electric dipole antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1642-1644, 2016.
doi:10.1109/LAWP.2016.2519942

15. Li, M. and K.-M. Luk, "A differential-fed UWB antenna element with unidirectional radiation," IEEE Transactions on Antennas and Propagation, Vol. 64, 3651-3656, 2016.
doi:10.1109/TAP.2016.2565726

16. Mosallaei, H. and K. Sarabandi, "Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate," IEEE Transactions on Antennas and Propagation, Vol. 52, 2403-2414, 2004.
doi:10.1109/TAP.2004.834135

17. Kamal, S. and A. A. Chaudhari, "Printed meander line MIMO antenna integrated with air gap, DGS and RIS: A low mutual coupling design for LTE applications," Progress In Electromagnetics Research, Vol. 71, 149-159, 2017.
doi:10.2528/PIERC16112008

18. Chattopadhyay, S., Trends in Research on Microstrip Antennas, 2017.
doi:10.5772/65580

19. Alkurt, F. O. and M. Karaaslan, "Characterization of tunable electromagnetic band gap material with disordered cavity resonator for X band imaging applications by resistive devices," Optical and Quantum Electronics, Vol. 51, No. 8, 279, 2019.
doi:10.1007/s11082-019-1995-5

20. Alkurt, F. O. and M. Karaaslan, "Pattern reconfigurable metasurface to improve characteristics of low profile antenna parameters," International Journal of RF and Microwave Computer-Aided Engineering, https://doi.org/10.1002/mmce.21790, 2019.

21. Bakır, M., et al. "Metamaterial characterization by applying different boundary conditions on triangular split ring resonator type metamaterials," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 30, No. 5, e2188, 2017.
doi:10.1002/jnm.2188

22. Sulyman, A. I., et al. "Radio propagation path loss models for 5G cellular networks in the 28 GHz and 38GHz millimeter-wave bands," IEEE Communications Magazine, Vol. 52, No. 9, 78-86, 2014.
doi:10.1109/MCOM.2014.6894456

23. Hong, W., et al. "Study and prototyping of practically large-scale mmWave antenna systems for 5G cellular devices," IEEE Communications Magazine, Vol. 52, No. 9, 63-69, 2014.
doi:10.1109/MCOM.2014.6894454

24. Esen, M., et al. "Investigation of electromagnetic and ultraviolet properties of nano-metal-coated textile surfaces," Applied Nanoscience, 1-11, 2019.

25. Agilent Advanced Design System, Santa Rose, CA: Keysight EEsof EDA.

26. Wadell, B. C., Transmission Line Design Handbook, Artech House, 1991.

27. Alley, G. D., "Interdigital capacitors and their application to lumped-element microwave integrated circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 18, No. 12, 1028-1033, 1970.
doi:10.1109/TMTT.1970.1127407

28. Bahl, I. J., Lumped Elements for RF and Microwave Circuits, Artech House, 2003.

29. CST Microwave Studio, LLC, US, Computer Simulation Technology Studio Suite.