Vol. 87
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-12-13
Body Shape and Complex Permittivity Determination Using the Method of Auxiliary Sources
By
Progress In Electromagnetics Research M, Vol. 87, 115-125, 2019
Abstract
In this article, the body shape and complex permittivity determination employing inverse electromagnetic scattering problem solution for two-dimensional cases is considered. The method of auxiliary sources (MAS) is used as a mathematical apparatus. Several body shape cases are considered, and the efficiency of the approach is shown. The program package is created based on this method, and the numerical experiment results are presented.
Citation
Vasil Tabatadze Kamil Karaçuha Ertuğrul Karaçuha , "Body Shape and Complex Permittivity Determination Using the Method of Auxiliary Sources," Progress In Electromagnetics Research M, Vol. 87, 115-125, 2019.
doi:10.2528/PIERM19100902
http://www.jpier.org/PIERM/pier.php?paper=19100902
References

1. Tabatadze, V., M. Prishvin, G. Saparishvili, D. Kakulia, and R. Zaridze, "Soil’s characteristics study and buried objects visualization using remote sensing," Proceedings of XIIth International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED-2007), 134-138, Tbilisi, Georgia, Sep. 17–20, 2007.

2. Tabatadze, V., D. Kakulia, G. Saparishvili, R. Zaridze, and N. Uzunoglou, "Development of an new efficient numerical approach for object recognition," Journal of Applied Electromagnetism, Vol. 12, 35-36, Nov. 18, 2008.

3. Tabatadze, V., D. Kakulia, G. Saparishvili, R. Zaridze, and N. Uzunoglou, "Development of a new efficient numerical approach for buried object recognition," Sensing and Imaging: An International Journal, Vol. 1, No. 1, 35-56, 2011.
doi:10.1007/s11220-011-0060-7

4. Zaridze, R., G. Bit-Babik, K. Tavzarashvili, N. K. Uzunoglu, and D. Economou, "The method of auxiliary sources (MAS) — Solution of propagation, diffraction and inverse problems using MAS," Appl. Comput. Electromagn., 33-45, Springer, 2000.
doi:10.1007/978-3-642-59629-2_3

5. Karacuha, E., "Determination of the orientation of cylindrical bodies buried in a slab from the scattering date," MMET’96, VIth Int. Conf. Math. Methods Electromagn. Theory Proc., 444-448, IEEE, 1996.
doi:10.1109/MMET.1996.565757

6. Peterson, E., "The σ-orientation," Form. Geom. Bordism Oper., 219-282, 2018, doi: 10.1017/9781108552165.008.
doi:10.1017/9781108552165.008

7. Idemen, M. and I. Akduman, "On inverse scattering problems related to cylindrical bodies with unknown orientations," Wave Motion, Vol. 17, 33-48, 1993.
doi:10.1016/0165-2125(93)90087-V

8. Idemen, M. and I. Akduman, "Some geometrical inverse problems connected with two-dimensional static fields," SIAM J. Appl. Math., Vol. 48, 703-718, 1988.
doi:10.1137/0148040

9. Anastassiu, H. T., D. I. Kaklamani, D. P. Economou, and O. Breinbjerg, "Electromagnetic scattering analysis of coated conductors with edges using the method of auxiliary sources (MAS) in conjunction with the standard impedance boundary condition (SIBC)," IEEE Trans. Antennas Propag., Vol. 50, 59-66, 2002.
doi:10.1109/8.992562

10. Abubakar, A., P. M. van den Berg, and S. Y. Semenov, "Two- and three-dimensional algorithms for microwave imaging and inverse scattering," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 2, 209-231, 2003.
doi:10.1163/156939303322235798

11. Colton, D. and R. Kress, Integral Equation Methods in Scattering Theory, Classics in Applied Mathematics, SIAM, Philadelphia, PA, 2013.
doi:10.1137/1.9781611973167

12. Colton, D. and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 3rd edition, Vol. 93, Applied Mathematical Sciences, 3rd edition, Vol. 93, Applied Mathematical Sciences, Springer-Verlag, New York, NY, 2013.
doi:10.1007/978-1-4614-4942-3

13. Meng, Q., et al., "Microwave imaging under oblique illumination," Sensors, Vol. 16, No. 7, 1046, 2016.
doi:10.3390/s16071046

14. Gintides, D. and L. Mindrinos, "The direct scattering problem of obliquely incident electromagnetic waves by a penetrable homogeneous cylinder," J. Integral Equations Appl., Vol. 28, No. 1, 91-122, 2016.
doi:10.1216/JIE-2016-28-1-91

15. Leviatan, Y., "Analytic continuation considerations when using generalized formulations for scattering problems," IEEE Trans. Antennas Propag., Vol. 38, No. 8, 1259-1263, Aug. 1990.
doi:10.1109/8.56964

16. Barnett, A. H. and T. Betcke, "Stability and convergence of the method of fundamental solutions for Helmholtz problems on analytic domains," J. Comput. Phys., Vol. 227, 7003-7026, Jul. 2008.

17. Tsitsas, N. L., G. P. Zouros, G. Fikioris, and Y. Leviatan, "On methods employing auxiliary sources for 2-D electromagnetic scattering by non-circular shapes," IEEE Trans. Antennas Propag., Vol. 66, No. 10, 5443-5452, 2018.
doi:10.1109/TAP.2018.2855963

18. Idemen, M., "On different possibilities offered by the Born approximation in inverse scattering problems," Inverse Problems, Vol. 5, No. 6, 1-8, 1989.
doi:10.1088/0266-5611/5/6/012