1. Liu, S., R. Zhan, J. Zhang, and Z. Zhuang, "Radar automatic target recognition based on sequential vanishing component analysis," Progress In Electromagnetics Research, Vol. 145, 241-250, 2014.
doi:10.2528/PIER14011608 Google Scholar
2. Osman, H., L. Pan, S. Blostein, and L. Gagnon, "Classification of ships in airborne SAR imagery using backpropagation neural networks," Proceedings of the SPIE Radar Processing, Technology, and Applications II, Vol. 3161, 126-136, San Diego, USA, September 24, 1997.
doi:10.1117/12.279464 Google Scholar
3. Zhou, J., Z. Shi, X. Cheng, and Q. Fu, "Automatic target recognition of SAR images based on global scattering center model," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, 3713-3729, 2011.
doi:10.1109/TGRS.2011.2162526 Google Scholar
4. Martorella, M., E. Giusti, L. Demi, Z. Zhou, A. Cacciamano, F. Berizzi, and B. Bates, "Target recognition by means of polarimetric ISAR images," IEEE Transactions on Aerospace and Electronic Systems, Vol. 47, 225-239, 2011.
doi:10.1109/TAES.2011.5705672 Google Scholar
5. Musman, S., D. Kerr, and C. Bachmann, "Automatic recognition of ISAR ship image," IEEE Transactions on Aerospace and Electronic Systems, Vol. 32, 1392-1403, 1996.
doi:10.1109/7.543860 Google Scholar
6. Ruck, G. T., D. E. Barrick, W. D. Stuart, and C. K. Krichbaum, Radar Cross Section Handbook, Vol. 1, Plenum, New York, 1970.
7. Lee, S.-J., I.-S. Choi, B. Cho, E. J. Rothwell, and A. K. Temme, "Performance enhancement of target recognition using feature vector fusion of monostatic and bistatic radar," Progress In Electromagnetics Research, Vol. 144, 291-302, 2014.
doi:10.2528/PIER13103101 Google Scholar
8. Lee, K. C., "Polarization effects on bistatic microwave imaging of perfectly conducting cylinders,", Master Thesis, National Taiwan University, Taipei, Taiwan, 1991.
doi:10.2528/PIER13103101 Google Scholar
9. Farhat, N. H., "Microwave diversity imaging and automated target identification based on models of neural networks," Proceedings of the IEEE, Vol. 77, 670-681, 1989.
doi:10.1109/5.32058 Google Scholar
10. Chi, C. and N. H. Farhat, "Frequency swept tomographic imaging of three-dimensional perfectly conducting objects," IEEE Transactions on Antennas and Propagation, Vol. 29, 312-319, 1981.
doi:10.1109/TAP.1981.1142571 Google Scholar
11. Farhat, N. H., T. Dzekov, and E. Ledet, "Computer simulation of frequency swept imaging," Proceedings of the IEEE, Vol. 64, 1453-1454, 1976.
doi:10.1109/PROC.1976.10354 Google Scholar
12. Chan, S. C. and K. C. Lee, "Radar target identification of ships by kernel principal component analysis on RCS," Journal of Electromagnetic Waves and Applications, Vol. 26, 64-74, 2012.
doi:10.1163/156939312798954900 Google Scholar
13. Chan, S. C. and K. C. Lee, "Radar target recognition by MSD algorithms on angular diversity RCS," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 937-940, 2013.
doi:10.1109/LAWP.2013.2274451 Google Scholar
14. Chan, S. C. and K. C. Lee, "Angular-diversity target recognition by kernel scatter-difference based discriminant analysis on RCS," International Journal of Applied Electromagnetics and Mechanics, Vol. 42, 409-420, 2013.
doi:10.3233/JAE-131673 Google Scholar
15. Liu, Q. S., X. Tang, H. Q. Lu, and S. D. Ma, "Kernel scatter-difference based discriminant analysisfor face recognition," Proceedings of the International Conference on Pattern Recognition, Vol. 2, 419-422, Cambridge, UK, August 26, 2004. Google Scholar
16. Liu, Q. S., X. Tang, H. Q. Lu, and S. D. Ma, "Face recognition using kernel scatter-difference based discriminant analysis," IEEE Transactions on Neural Networks, Vol. 17, 1081-1085, 2006.
doi:10.1109/TNN.2006.875970 Google Scholar
17. Duda, R. O., P. E. Hart, and D. G. Stork, Pattern Classification, Wiley, New York, 2001.