Vol. 87
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-12-16
Radar Target Recognition by Frequency-Diversity RCS Together with Kernel Scatter Difference Discrimination
By
Progress In Electromagnetics Research M, Vol. 87, 137-145, 2019
Abstract
In this paper, the radar target recognition is given by frequency-diversity RCS (radar cross section) together with kernel scatter difference discrimination. The frequency-diversity technique means to collect electromagnetic signals by sweeping the operation frequencies. Such a technique is usually utilized in inverse scattering and radar target recognition because different frequencies each may contain important information of a target. By using the frequency diversity RCS technique, one can reduce the times of spatial measurement. This is an important contribution since it is always difficult to build a spatial radar measurement in practical battlefield environments. To enhance the pattern recognition, the collected RCS data are processed by the kernel scatter difference discrimination, which is improved from the Fisher discrimination. To investigate the capability of tolerating environmental fluctuation, each simulated RCS data is added by a random component prior to implementing pattern recognition. Numerical simulation shows that our recognition scheme is still very accurate even though the RCS contains a random component.
Citation
Kun-Chou Lee, "Radar Target Recognition by Frequency-Diversity RCS Together with Kernel Scatter Difference Discrimination," Progress In Electromagnetics Research M, Vol. 87, 137-145, 2019.
doi:10.2528/PIERM19101201
References

1. Liu, S., R. Zhan, J. Zhang, and Z. Zhuang, "Radar automatic target recognition based on sequential vanishing component analysis," Progress In Electromagnetics Research, Vol. 145, 241-250, 2014.
doi:10.2528/PIER14011608

2. Osman, H., L. Pan, S. Blostein, and L. Gagnon, "Classification of ships in airborne SAR imagery using backpropagation neural networks," Proceedings of the SPIE Radar Processing, Technology, and Applications II, Vol. 3161, 126-136, San Diego, USA, September 24, 1997.
doi:10.1117/12.279464

3. Zhou, J., Z. Shi, X. Cheng, and Q. Fu, "Automatic target recognition of SAR images based on global scattering center model," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, 3713-3729, 2011.
doi:10.1109/TGRS.2011.2162526

4. Martorella, M., E. Giusti, L. Demi, Z. Zhou, A. Cacciamano, F. Berizzi, and B. Bates, "Target recognition by means of polarimetric ISAR images," IEEE Transactions on Aerospace and Electronic Systems, Vol. 47, 225-239, 2011.
doi:10.1109/TAES.2011.5705672

5. Musman, S., D. Kerr, and C. Bachmann, "Automatic recognition of ISAR ship image," IEEE Transactions on Aerospace and Electronic Systems, Vol. 32, 1392-1403, 1996.
doi:10.1109/7.543860

6. Ruck, G. T., D. E. Barrick, W. D. Stuart, and C. K. Krichbaum, Radar Cross Section Handbook, Vol. 1, Plenum, New York, 1970.

7. Lee, S.-J., I.-S. Choi, B. Cho, E. J. Rothwell, and A. K. Temme, "Performance enhancement of target recognition using feature vector fusion of monostatic and bistatic radar," Progress In Electromagnetics Research, Vol. 144, 291-302, 2014.
doi:10.2528/PIER13103101

8. Lee, K. C., "Polarization effects on bistatic microwave imaging of perfectly conducting cylinders,", Master Thesis, National Taiwan University, Taipei, Taiwan, 1991.
doi:10.2528/PIER13103101

9. Farhat, N. H., "Microwave diversity imaging and automated target identification based on models of neural networks," Proceedings of the IEEE, Vol. 77, 670-681, 1989.
doi:10.1109/5.32058

10. Chi, C. and N. H. Farhat, "Frequency swept tomographic imaging of three-dimensional perfectly conducting objects," IEEE Transactions on Antennas and Propagation, Vol. 29, 312-319, 1981.
doi:10.1109/TAP.1981.1142571

11. Farhat, N. H., T. Dzekov, and E. Ledet, "Computer simulation of frequency swept imaging," Proceedings of the IEEE, Vol. 64, 1453-1454, 1976.
doi:10.1109/PROC.1976.10354

12. Chan, S. C. and K. C. Lee, "Radar target identification of ships by kernel principal component analysis on RCS," Journal of Electromagnetic Waves and Applications, Vol. 26, 64-74, 2012.
doi:10.1163/156939312798954900

13. Chan, S. C. and K. C. Lee, "Radar target recognition by MSD algorithms on angular diversity RCS," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 937-940, 2013.
doi:10.1109/LAWP.2013.2274451

14. Chan, S. C. and K. C. Lee, "Angular-diversity target recognition by kernel scatter-difference based discriminant analysis on RCS," International Journal of Applied Electromagnetics and Mechanics, Vol. 42, 409-420, 2013.
doi:10.3233/JAE-131673

15. Liu, Q. S., X. Tang, H. Q. Lu, and S. D. Ma, "Kernel scatter-difference based discriminant analysisfor face recognition," Proceedings of the International Conference on Pattern Recognition, Vol. 2, 419-422, Cambridge, UK, August 26, 2004.

16. Liu, Q. S., X. Tang, H. Q. Lu, and S. D. Ma, "Face recognition using kernel scatter-difference based discriminant analysis," IEEE Transactions on Neural Networks, Vol. 17, 1081-1085, 2006.
doi:10.1109/TNN.2006.875970

17. Duda, R. O., P. E. Hart, and D. G. Stork, Pattern Classification, Wiley, New York, 2001.